INTERNATIONAL ENERGY AGENCY
solar heating and cooling programme

IEA
SOLAR R&D

task VIII
passive and hybrid solar low energy buildings

PERFORMANCE DATA SOURCES

january 1986
INTERNATIONAL ENERGY AGENCY
solar heating and cooling programme

task VIII
passive and hybrid solar low energy buildings

PERFORMANCE DATA SOURCES

PREPARED BY
Ove Mørck, TECHNICAL UNIVERSITY OF DENMARK
Michael J. Holtz, ARCHITECTURAL ENERGY CORPORATION, U.S.A

JANUARY 1986

THERMAL INSULATION LABORATORY
TECHNICAL UNIVERSITY OF DENMARK
Report No 175
ACKNOWLEDGMENTS

The report authors wish to acknowledge the assistance of Beth Sachs and Blair Hamilton of the Memphremagog Group in preparing the index lists in Chapter 3. Also, we would like to thank the representatives of Subtask A who completed the survey forms and reviewed the final report and Sheila Blum and Jean Mewshaw of International Planning Associates for their editorial assistance.
INTRODUCTION TO THE IEA SOLAR HEATING AND COOLING PROGRAMME

BACKGROUND

The International Energy Agency was formed in November 1974 to establish cooperation among a number of industrialized countries in the vital area of energy policy. It is an autonomous body within the framework of the Organization for Economic Cooperation and Development (OECD). Twenty-one countries are presently members, with the Commission of the European Communities also participating in the work of the IEA under a special arrangement.

One element of the IEA's programme involves cooperation in the research and development of alternative energy resources in order to reduce excessive dependence on oil. A number of new and improved energy technologies which have the potential of making significant contributions to global energy needs were identified for collaborative efforts. The IEA Committee on Energy Research and Development (CRD), supported by a small Secretariat staff is the focus of IEA RD&D activities. Four Working Parties (in Conservation, Fossil Fuels, Renewable Energy, and Fusion) are charged with identifying new areas for cooperation and advising the CRD on policy matters in their respective technology areas.

SOLAR HEATING & COOLING AGREEMENT

Solar Heating and Cooling was one of the technologies selected for joint activities. During 1976-77, specific projects were identified in key areas of this field and a formal Implementing Agreement drawn up. The Agreement covers the obligations and rights of the Participants and outlines the scope of each project or "task" in annexes to the document. There are now eighteen signatories to the Agreement:

Australia Japan
Austria Netherlands
Belgium New Zealand
Canada Norway
Denmark Spain
Commission of the Sweden
 European Communities
Federal Republic of Germany Switzerland
Greece United Kingdom
Italy United States
The overall programme is managed by an Executive Committee, while the management of the individual tasks is the responsibility of Operating Agents. The tasks of the IEA Solar Heating and Cooling Programme, their respective Operating Agents, and current status (ongoing or completed) are as follows:

Task I Investigation of the Performance of Solar Heating and Cooling Systems - Technical University of Denmark (Completed).

Task II Coordination of Research and Development on Solar Heating and Cooling - Solar Research Laboratory - GIRIN, Japan (Completed).

Task III Performance Testing of Solar Collectors - University College, Cardiff, U.K. (ongoing)

Task V Use of Existing Meteorological Information for Solar Energy Application - Swedish Meteorological and Hydrological Institute (Completed).

Task VII Central Solar Heating Plants with Seasonal Storage - Swedish Council for Building Research (Ongoing).

Task IX Solar Radiation and Pyranometry Studies - Canadian Climate Centre (Ongoing).

Task X Materials Research & Testing - Solar Research Laboratory, GIRIN, Japan (Ongoing).
The Participants in Task VIII are involved in collaborative research to study the design integration issues associated with using passive and hybrid solar and energy conservation techniques in new residential buildings. The overall objective of Task VIII is to accelerate the development and use of passive and hybrid heated and cooled low energy buildings in the Participants' countries. The results will be an improved understanding of the design and performance of buildings using active and passive solar and energy conservation techniques, their interaction and effective combination in various climatic regions. The results will also verify that passive and hybrid solar low energy buildings can substantially reduce the building load and consumption of non-renewable energy over that of conventional buildings while maintaining acceptable levels of year-round comfort. The Subtasks of this project are:

O. Technology Baseline Definition
A. Performance Measurement and Analysis
B. Modeling and Simulation
C. Design Methods
D. Building Design, Construction and Evaluation

The Participants in this Task are: Austria, Belgium, Canada, Denmark, Federal Republic of Germany, Italy, The Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, United States and United Kingdom. Michael J. Holtz, A.I.A., Architectural Energy Corporation, serves as Operating Agent on behalf of the U.S. Department of Energy.

This report documents work carried out under Subtask A of this Task.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>i-iii</td>
</tr>
<tr>
<td>1. Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>2. Introduction</td>
<td>7</td>
</tr>
<tr>
<td>3. Index Lists</td>
<td>9</td>
</tr>
<tr>
<td>4. Building and System Description Forms</td>
<td>49</td>
</tr>
<tr>
<td>5. Performance Data for System Evaluation Forms</td>
<td>141</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>A. List of Task VIII, Subtask A Representatives</td>
<td>265</td>
</tr>
</tbody>
</table>
1. EXECUTIVE SUMMARY

This document presents the results of a survey of monitored passive and hybrid solar low energy residential buildings conducted within IEA countries during the period from autumn 1983 to spring 1985. The survey was undertaken as part of Subtask A, Performance Measurement and Analysis, of Task VIII, Passive and Hybrid Solar Low Energy Buildings of the IEA Solar Heating and Cooling Programme. One of the objectives of this Subtask is to report on the availability of data from monitored passive and hybrid solar low energy residential buildings in the member countries. The intent is to identify sources of high quality performance data for purposes of simulation and design tool evaluation, passive and hybrid system performance characterization and policy formulation. The major part of the report consists of building description forms which briefly describe the buildings, summarize performance, list available data and identify reference sources for further information. More detailed performance data is provided for 60 of the buildings. To assist the reader in findings projects of particular interest, an indexing system has been generated, using 16 different entries from the forms.

The objectives of the survey were:

1. To determine the availability of data from monitored projects in the IEA Task VIII member countries;

2. To identify data needs;

3. To make designers, builders and researchers aware of available data; and

4. To document and assess the performance of the surveyed buildings in order to make comparisons of passive/hybrid system performance in various climates.

The survey forms were generated and distributed to the participating countries of Task VIII. One survey form was used to identify sources of performance data and the other form to briefly report the performance of selected projects. The survey forms are included as Appendix A to this report.
The survey identified 181 monitored passive and hybrid solar residential buildings in seven countries for which performance data are available. Information from the survey forms was used to prepare the building description forms in Chapter 4 which describe the building, briefly summarize performance, list available data and identify reference sources for further information. Key information from these forms was reorganized into a set of index lists, presented in Chapter 3, which assist the reader in identifying the performance evaluation sites and data sets which may be of particular interest.

More detailed system and building descriptions and building performance information were included for 60 of the projects. These performance data forms are presented in Chapter 5 and provide illustrations and performance assessments for specific system types in the different climates.

Of the 181 reported projects, 148 are from the U.S. This clearly indicates a greater emphasis on performance monitoring in the U.S. in the past 5 years. However, the number of monitored European and New Zealand sites is increasing and a larger data base of quality data will soon be available from those countries.

The categories of passive heating systems in the surveyed projects and their distribution is shown in Figure 1.1.

As would be expected, the greatest number of monitored projects are for direct gain, mass wall and sunspace heating systems, the most popular passive system types. Limited performance data exists for water wall, hybrid, roof pond and other innovative systems, reflecting the current limited use and interest in these systems by designers and researchers.

Catagorization of the monitored sites by climate variables is useful in assessing data availability and data needs. Figures 1.2 and 1.3 show the distribution of projects plotted against annual global solar radiation and Heating Degree Days and Cooling Degree Days, respectively.
Figure 1.1 Distribution of Sites by Passive Heating System Type (absolute number, percentage).
Figure 1.2 Distribution of Projects by Heating Degree Days vs. Annual Global Solar Radiation.
Figure 1.3 Distribution of Projects by Cooling Degree Days vs. Annual Global Solar Radiation.
Conclusions

A detailed assessment of the survey results was not performed. However, a review of the monitored projects reported in the surveys leads to the following general conclusions:

1. The majority of reported projects are from the United States. A clear need exists for additional monitored data from European climates.

2. The majority of the reported projects are for the most common passive heating system types – direct gain, thermal storage walls and sunspace.

3. An insufficient number of hybrid solar heating systems are reported to allow the performance comparison of this system type with either totally active or passive systems.

4. Little data are reported on the performance of roof ponds or water walls.

5. Data quality in general appears to be high. However, usefulness for purposes of simulation validation, design tool evaluation or system performance comparison can only be assessed on a case-by-case basis.

6. A need exists for the development and use of a consistent performance evaluation methodology to allow comparison of data among various countries.

The present survey has created an overview of available performance data on passive and hybrid solar low energy buildings in the IEA Task VIII member countries. This overview provides important guidance of the planning of future monitoring projects in this area.
2. INTRODUCTION

The absence of thermal performance data from monitored passive and hybrid solar residential buildings used to be a major obstacle to designers, builders, researchers, analysts and policy-makers seeking to determine the value of these energy saving concepts. Within the last five years, however, the number, location and types of passive and hybrid solar residential buildings monitored within IEA countries has grown dramatically. The number of monitored passive and hybrid solar buildings is currently estimated to be over 200. The issue has now become how to make data from selected monitored buildings available so that it can be further analyzed and used by designers, builders and researchers.

The purpose of this publication is to present and index sources of monitored performance data for passive and hybrid solar residential buildings in the countries participating in Subtask "A" of IEA Task VIII. Only buildings which have undergone six months of monitoring critical performance variables have been included in this report. Also, the quality of the data had to be high, and the monitored results fully documented with available data sets.

The survey information is presented in three parts. The first part, Chapter 3, is an index of 16 lists that tabulate the 181 buildings according to various characteristics - heating degree days, type of construction, auxiliary system type, and so on. The second part, Chapter 4, is a series of single page forms that describe each building, briefly summarize performance, list available data and identify reference sources for further information. The third part, Chapter 5, presents drawings and more detailed information on 60 of the monitored buildings.

The intended process for using this report is as follows:

1. Carefully define your requirements for the type of data needed, such as location, passive system type, building type, and so on.

2. Review the 16 lists in Chapter 3 to select the appropriate indices.

3. Review Chapters 4 and 5 to identify candidate monitored projects.
4. Rank the candidate monitored projects in descending order of usefulness relative to your data needs.

5. Contact the individual or organization identified as the project contact on the Project Summary Forms in Chapter 4 to obtain additional information on the monitored project and the availability of documentation.

6. Make arrangements to obtain the data and all necessary project documentation.

Data acquisition is an extremely difficult, time-consuming and expensive activity. Yet monitored data is indispensable for model validation, design tool evaluation and building performance evaluation/comparison. This report is intended to bring possible sources of quality monitored data to the attention of those requiring such information. It is hoped that it will facilitate the acquisition of valuable measured performance information, saving time, money and avoiding unnecessary project duplication.
3. INDEX LISTS

This chapter contains 16 lists to assist in identifying particular performance evaluation sites and data sets which may be of interest. The following tabulations of site characteristics are included in the following pages:

3.1 List of Sites by Location
3.2 List of Sites by Level of Monitoring
3.3 List of Sites by Heating Degree Days
3.4 List of Sites by Cooling Degree Days
3.5 List of Sites by Global Solar Radiation
3.6 List of Sites by Aperture/Floor Area Ratio
3.7 List of Sites by Heated Floor Area
3.8 List of Sites by Total Heat Loss Coefficient
3.9 List of Sites by Passive Heating System Type
3.10 List of Sites by Passive Cooling System Type
3.11 List of Sites by Other Passive Components
3.12 List of Sites by Thermal Storage Materials
3.13 List of Sites by Type of Construction
3.14 List of Sites by Auxiliary Fuel Type
3.15 List of Sites by Auxiliary System Type
3.16 List of Sites by Building Type

To assist the reader in using and understanding the index lists, the following explanatory notes are provided.

1. Each site in the index lists has been assigned a site code. The first two characters of the code represent the country in which the site is located, i.e., BE = Belgium and CD = Canada. The last two characters of the code represent the site number, i.e., BE-02 is the second site in Belgium. Because there are so many sites in the U.S., an abbreviation for the state is also included. For example, US/AZ-01 is the first U.S. site in Arizona. The single-page data sheets in Chapter 4 are arranged in order of these site codes.
2. The "levels of monitoring" referred to in this report are based on the categories used in the U.S. (1). They are defined as follows:

Level "A" typically over 100 sensors; hourly data; continuously measured infiltration; measured properties of materials.

Level "A-" typically over 100 sensors; hourly data; one-time or intermittent infiltration measurement; assumed properties of materials.

Level "B+" typically over 20 sensors; at least some hourly data; one-time measurements; monthly energy balances; measured indoor and outdoor environment.

Level "B" typically over 20 sensors; one-time measurements; monthly energy balances; measured indoor and outdoor environment.

Level "B-" similar to Level B but lacking full information to determine monthly energy balances.

3. In any list where a single building has multiple characteristics by which it might be listed, there are duplicate listings for the site, one under each characteristic.

4. Not all sites are found on all of the 16 lists. For any site this may either be because the particular characteristic does not apply to the site or because information on that characteristic for the site was not available.

REFERENCE(S)

LIST OF SITES BY LOCATION

BELGIUM
* BE-01 Nandrin Direct Gain/Sunspace Nandrin, Belgium
* BE-02 Chaumont Gistoux Solar House Chaumont-Gistoux, Belgium
* BE-03 Rosieres Solar House Rosieres, Belgium

CANADA
CD-01 NRC Passive Solar Test Facility Ottawa, Canada
CD-02 Alberta Home Heat Research Fac. Edmonton, Canada

DENMARK
* DK-01 Lyngby Solar House Lyngby, Denmark
 DK-02 Lysoftevaenget Lyngby, Denmark
 DK-03 SBI Low Energy House Horsholm, Denmark

NORWAY
* NO-01 Ivilde Solar House Ivilde, Voss, Norway
* NO-02 Trondheim Test Building Trondheim, Norway
 NO-03 Baerum County Low Energy House Baerum County, Norway
 NO-04 Double Shell House at As As, Norway
* NO-05 Heimdal Solar House #2 Tiller, Norway
* NO-06 Heimdal Solar House #3 Tiller, Norway
* NO-07 Heimdal Low Energy House 14 Tiller, Norway
 NO-08 Indre Ostfold Meier Solar Bldg. Mysen, Norway

SWEDEN
* SW-01 Str. Lagenergiprojekt for Smahu Str. Lagenergiprojekt for Smahu Vaxjo, Sweden
 SW-02 Teleborg Passive Solar Home Vaxjo, Sweden
 SW-03 Fargelanda Passive Solar Home Fargelanda, Sweden
 SW-04 Valdemarsro Low Energy Houses Malmo, Sweden
 SW-05 Smalands Taberg Low Energy Homes Taberg, Sweden
 SW-06 Bramhult Solar Houses Bramhult, Sweden
 SW-07 Tarnan Solar Houses Landskrona, Sweden

SWITZERLAND
CH-01 Dersbach Rowhouses Hunenberg, Switzerland
CH-02 Meggen Solar Apartment Bldg. Meggen, Switzerland
CH-03 Adliswil Solar Apartments Adliswil, Switzerland
CH-04 Courtelary Apartments Courtelary, Switzerland
CH-05 Cannobio Test Cell #1 Cannobio, Switzerland
CH-06 Cannobio Test Cell #2 Cannobio, Switzerland
 CH-07 Schaub Solar House Rothenfluh, Switzerland
 CH-08 Schafet Solar House Binz, Switzerland
 CH-09 Wieland Solar House Oberglatt, Switzerland
 CH-10 Gmure Solar House Gonten, Switzerland

* Denotes projects presented in more detail in Chapter 5.
LIST OF SITES BY LOCATION

UNITED STATES - ARIZONA
US/AZ-01 Passive Cooling Test Bldg. #1 Tucson, Arizona
US/AZ-02 Passive Cooling Test Bldg. #2 Tucson, Arizona
US/AZ-03 Passive Cooling Test Bldg. #3 Tucson, Arizona
US/AZ-04 Fiesta Home Phoenix, Arizona
US/AZ-05 Hospitality Home Phoenix, Arizona
* US/AZ-06 Hulicco Construction Prescott, Arizona
US/AZ-07 Payson House (Site WAA) Payson, Arizona
US/AZ-08 Solar Townhouse (Site WAD) Glendale, Arizona
US/AZ-09 Vasqui House (Site WAC) Tucson, Arizona
US/AZ-10 Solar Log House (Site WAE) Cave Creek, Arizona
US/AZ-11 U.S. Homes Control Home Tucson, Arizona
US/AZ-12 U.S. Homes Solar Home No. 1 Tucson, Arizona

UNITED STATES - CALIFORNIA
* US/CA-01 Living Systems Davis, California
US/CA-02 Maeda/Nittler Sun catcher House Davis, California
US/CA-03 PP&L Test House #4 Crescent City, California
US/CA-04 SMUD MB Residence Elk Grove, California
US/CA-05 SMUD Y8 Residence Sacramento, California
US/CA-06 Passive Solar House Stockton, California
* US/CA-07 Solar Duplex (Site WSA) Davis, California
US/CA-08 Colton Solar House (Site WSD) Colton, California
US/CA-09 Colton Conservation (Site WSE) Colton, California
* US/CA-10 Yreka House (Site WSF) Yreka, California
* US/CA-11 Eureka House (Site WSG) Bayside, California
* US/CA-12 Truckee House (Site WSH) Truckee, California
US/CA-13 Santa Barbara House (Site WSI) Santa Barbara, California
US/CA-14 Rio Linda Solar House (Site WSJ) Rio Linda, California
* US/CA-15 Sacramento Solar Condo (Site WSK) Sacramento, California
US/CA-16 Rio Linda Conservation (Site WSL) Rio Linda, California
US/CA-17 Sebastopol House (Site WSM) Rio Linda, California

UNITED STATES - COLORADO
* US/CO-01 Colorado Sunworks Longmont, Colorado
* US/CO-02 Boulder House (Site DMA) Boulder, Colorado
US/CO-03 Lafayette House (Site DMC) Lafayette, Colorado
* US/CO-04 Golden House (Site DMO) Golden, Colorado
* US/CO-05 Arvada House (Site DME) Arvada, Colorado
US/CO-06 Westminster House (Site DMF) Westminster, Colorado
* US/CO-07 Northglenn House (Site DMG) Northglenn, Colorado
* US/CO-08 Denver House #1 (Site DMH) Denver, Colorado
* US/CO-09 Denver House #2 (Site DMI) Denver, Colorado
* US/CO-10 Aurora House #1 (Site DMJ) Aurora, Colorado
US/CO-11 Aurora House #2 (Site DMK) Aurora, Colorado
* US/CO-12 Aurora House #3 (Site DML) Aurora, Colorado
US/CO-13 Tillotson House (Site DMM) Nederland, Colorado
US/CO-14 Paschall House (Site DMN) Golden, Colorado
* US/CO-15 Acorn House (Site MBA) Boulder, Colorado
* US/CO-16 Class A Test House Golden, Colorado
US/CO-17 REPEAT Facility Fort Collins, Colorado
LIST OF SITES BY LOCATION

UNITED STATES - CONNECTICUT
* US/CT-01 Tolland House (Site NEC)
 Tolland, Connecticut

UNITED STATES - FLORIDA
 US/FL-01 FSEC Passive Cooling Laboratory
 Cape Canaveral, Florida

UNITED STATES - GEORGIA
 US/GA-01 Photovoltaic House
 Roswell, Georgia
 US/GA-02 Seedorf House
 Atlanta, Georgia
 US/GA-03 Suwanee House (Site SSF)
 Suwanee, Georgia
 US/GA-04 Atlanta House (Site SSG)
 Atlanta, Georgia

UNITED STATES - IOWA
 US/IA-01 Peosta House (Site MAA)
 Peosta, Iowa
 US/IA-02 Kirkwood House (Site MAB)
 Cedar Rapids, Iowa
 * US/IA-03 Wehner House
 Iowa City, Iowa

UNITED STATES - IDAHO
 US/ID-01 Dan Smith House
 Boise, Idaho

UNITED STATES - ILLINOIS
 * US/IL-01 Lo-Cal A
 Champaign, Illinois

UNITED STATES - KANSAS
 US/KS-01 Quail Valley Conventional House
 Overland Park, Kansas
 US/KS-02 Quail Valley Solar House
 Overland Park, Kansas

UNITED STATES - MASSACHUSETTS
 US/MA-01 Braintree Building (Site NEP)
 Braintree, Massachusetts
 US/MA-02 Mattapoisett Building (Site NES)
 Mattapoisett, Massachusetts
 US/MA-03 Cumlington Building (Site NEU)
 Cumlington, Massachusetts
 * US/MA-04 Hamilton House (Site NEA)
 Hamilton, Massachusetts
 * US/MA-05 Orange House (Site NEB)
 Orange, Massachusetts
 US/MA-06 Lexington House (Site NEJ)
 Lexington, Massachusetts
 US/MA-07 Carlisle House (Site NPV)
 Carlisle, Massachusetts

UNITED STATES - MARYLAND
 US/MD-01 EER-2
 Damascus, Maryland
 US/MD-02 NBS Thermal Mass Test Bldg. #1
 Gaithersburg, Maryland
 US/MD-03 NBS Thermal Mass Test Bldg. #2
 Gaithersburg, Maryland
 US/MD-04 NBS Thermal Mass Test Bldg. #3
 Gaithersburg, Maryland
 US/MD-05 NBS Thermal Mass Test Bldg. #4
 Gaithersburg, Maryland
 US/MD-06 NBS Thermal Mass Test Bldg. #5
 Gaithersburg, Maryland
 US/MD-07 NBS Thermal Mass Test Bldg. #6
 Gaithersburg, Maryland
 * US/MD-08 NBS Passive Solar Test Building
 Gaithersburg, Maryland
 * US/MD-09 Rymark I
 Frederick, Maryland
 * US/MD-10 Rymark II
 Frederick, Maryland
 * US/MD-11 Rymark III
 Frederick, Maryland

UNITED STATES - MAINE
 * US/ME-01 Topsham House (Site NEH)
 Topsham, Maine
LIST OF SITES BY LOCATION

UNITED STATES - MICHIGAN
- **US/MI-01** Detroit Edison Passive Home, Troy, Michigan

UNITED STATES - MINNESOTA
- **US/MN-01** Arno Kahn House, Hermantown, Michigan
- **US/MN-02** Plymouth House (Site MAP), Plymouth, Minnesota
- **US/MN-03** Northfield House (Site MAN), Northfield, Minnesota
- **US/MN-04** Brainerd House (Site MAD), Brainerd, Minnesota
- **US/MN-05** Esko House (Site MAE), Duluth, Minnesota

UNITED STATES - MONTANA
- **US/MT-01** Darcy House, Bozeman, Montana
- **US/MT-02** Fowlkes House, Bozeman, Montana
- **US/MT-03** Hughes Residence, Miles City, Montana

UNITED STATES - NEBRASKA
- **US/NB-01** Coren House (Site MAM), Lincoln, Nebraska

UNITED STATES - NEW HAMPSHIRE
- **US/NH-01** Northwood House (Site NEM), Northwood, New Hampshire

UNITED STATES - NEW JERSEY
- **US/NJ-01** Environmental Partnership, Cream Ridge, New Jersey

UNITED STATES - NEW MEXICO
- **US/NM-01** Balcomb House, Santa Fe, New Mexico
- **US/NM-02** Hunn House, White Rock, New Mexico

UNITED STATES - NEW YORK
- **US/NY-01** Gill Harrop House, Big Flats, New York
- **US/NY-02** Niagara Mohawk House, Herkimer, New York

UNITED STATES - NORTH CAROLINA
- **US/NC-01** NCSU Solar House, Raleigh, North Carolina
- **US/NC-02** Carrboro House (Site SSM), Carrboro, North Carolina
- **US/NC-03** Black Mountain House (Site SSK), Black Mountain, South Carolina

UNITED STATES - NORTH DAKOTA
- **US/ND-01** Fargo House (Site MBD), Fargo, North Dakota

UNITED STATES - OHIO
- **US/OH-01** Baker Construction, Cincinnati, Ohio

UNITED STATES - OKLAHOMA
- **US/OK-01** Edmond House (Site SSA), Edmond, Oklahoma
LIST OF SITES BY LOCATION

UNITED STATES - OREGON
 US/OR-01 Adair House Hillsboro, Oregon
 US/OR-02 Conifer House Hillsboro, Oregon
 US/OR-03 Edwards House Hillsboro, Oregon
 US/OR-04 Shelter House Hillsboro, Oregon
 US/OR-05 Waibel House Hillsboro, Oregon
 US/OR-06 Cameo House Hillsboro, Oregon
 US/OR-07 Hawley House Hillsboro, Oregon
* US/OR-08 Modena Homes Eugene, Oregon
 US/OR-09 ODOE House #1 Tumalo, Oregon
 US/OR-10 ODOE House #2 Keizer, Oregon
 US/OR-11 ODOE House #3 West Eugene, Oregon
 US/OR-12 ODOE House #4 West Hills, Oregon
 US/OR-13 ODOE House #5 Sisters, Oregon
 US/OR-14 PP&L Solar House #1 Coos Bay, Oregon
 US/OR-15 PP&L Solar House #2 Bend, Oregon
 US/OR-16 PP&L Solar House #3 Grants Pass, Oregon
 US/OR-17 PP&L Retrofit House Portland, Oregon

UNITED STATES - RHODE ISLAND
 US/RI-01 Mastin Double Envelope House Middletown, Rhode Island
* US/RI-02 Jamestown House (Site NEL) Jamestown, Rhode Island

UNITED STATES - SOUTH CAROLINA
 US/SC-01 Manning House (Site SSJ) Manning, South Carolina

UNITED STATES - TENNESSEE
 US/TN-01 Tech House V Knoxville, Tennessee
 US/TX-01 Houston House (Site SSB) Houston, Texas
 US/TX-02 Passive Test Facility San Antonio, Texas
 US/TX-03 Grapevine Passive Solar Homes Grapevine, Texas

UNITED STATES - VIRGINIA
* US/VA-01 Roberts Home Reston, Virginia
 US/VA-02 Usry Direct Gain (Site MBG) Richmond, Virginia
 US/VA-03 Usry Solarium (Site MBY) Richmond, Virginia
 US/VA-04 Stephens City House (Site SSL) Stephens City, Virginia
* US/VA-05 Richmond House (Site SSN) Richmond, Virginia

UNITED STATES - VERMONT
 US/VT-01 Blouin House South Royalton, Vermont
* US/VT-02 Newport House (Site NED) Newport, Vermont
 US/VT-03 South Royalton House (Site NEK) South Royalton, Vermont

* Denotes projects presented in more detail in Chapter 5.
LIST OF SITES BY LOCATION

UNITED STATES - WASHINGTON
- US/WA-01 Hildahl Construction, Spokane, Washington
- US/WA-02 Aspen Homes, Spokane, Washington
- US/WA-03 B&B Enterprises, Spokane, Washington
- US/WA-04 Capp Homes, Spokane, Washington
- US/WA-05 Caravelle House, Spokane, Washington
- US/WA-06 Farrow Construction, Spokane, Washington
- US/WA-08 Roth Development, Spokane, Washington
- US/WA-09 Michael's Homes, Spokane, Washington

UNITED STATES - WISCONSIN
- *US/WI-01 Eau Claire House (Site MAC), Eau Claire, Wisconsin
- US/WI-02 Spencer House (Site MBB), Spencer, Wisconsin
- US/WI-03 WP&L Beloit House, Beloit, Wisconsin
- US/WI-05 WP&L Janesville House, Janesville, Wisconsin

UNITED STATES - WYOMING
- US/WY-01 PP&L House #5, Sheridan, Wyoming
LIST OF SITES BY LEVEL OF MONITORING

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>A</td>
<td>SW-05</td>
</tr>
<tr>
<td>A</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>A</td>
<td>US/MD-08</td>
</tr>
<tr>
<td>A-</td>
<td>CD-01</td>
</tr>
<tr>
<td>A-</td>
<td>CD-02</td>
</tr>
<tr>
<td>A-</td>
<td>CH-05</td>
</tr>
<tr>
<td>A-</td>
<td>CH-06</td>
</tr>
<tr>
<td>A-</td>
<td>NO-08</td>
</tr>
<tr>
<td>A-</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>A</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>A</td>
<td>US/AZ-03</td>
</tr>
<tr>
<td>A-</td>
<td>US/FL-01</td>
</tr>
<tr>
<td>A-</td>
<td>US/IL-01</td>
</tr>
<tr>
<td>B+</td>
<td>BE-01</td>
</tr>
<tr>
<td>B+</td>
<td>BE-02</td>
</tr>
<tr>
<td>B+</td>
<td>BE-03</td>
</tr>
<tr>
<td>B+</td>
<td>SW-01</td>
</tr>
<tr>
<td>B+</td>
<td>SW-02</td>
</tr>
<tr>
<td>B+</td>
<td>SW-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>B+</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-08</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-09</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-10</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-11</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-12</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-13</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-15</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-16</td>
</tr>
<tr>
<td>B+</td>
<td>US/CA-17</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-05</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-06</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-07</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-11</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-13</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-14</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-15</td>
</tr>
<tr>
<td>B+</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>B+</td>
<td>US/CT-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/GA-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/GA-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/GA-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/GA-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/IA-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/MA-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/MA-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/MA-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/MA-05</td>
</tr>
<tr>
<td>B+</td>
<td>US/MA-06</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-05</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-06</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-07</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-08</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-09</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-10</td>
</tr>
<tr>
<td>B+</td>
<td>US/MD-11</td>
</tr>
<tr>
<td>B+</td>
<td>US/ME-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/MN-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/MN-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/MN-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/MN-05</td>
</tr>
<tr>
<td>B+</td>
<td>US/NB-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/NC-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/NC-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/ND-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/NH-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/NJ-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/NM-01</td>
</tr>
<tr>
<td>LEVEL</td>
<td>SITE</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>B+</td>
<td>US/NY-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/OH-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/DK-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-05</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-06</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-07</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-08</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-14</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-15</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-16</td>
</tr>
<tr>
<td>B+</td>
<td>US/OR-17</td>
</tr>
<tr>
<td>B+</td>
<td>US/RI-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/SC-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/TX-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/VA-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/VA-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/VA-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/VT-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/VT-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-03</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-04</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-05</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-06</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-07</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-08</td>
</tr>
<tr>
<td>B+</td>
<td>US/WA-09</td>
</tr>
<tr>
<td>B+</td>
<td>US/WI-01</td>
</tr>
<tr>
<td>B+</td>
<td>US/WI-02</td>
</tr>
<tr>
<td>B+</td>
<td>US/WY-01</td>
</tr>
<tr>
<td>B</td>
<td>CH-01</td>
</tr>
<tr>
<td>B</td>
<td>CH-02</td>
</tr>
<tr>
<td>B</td>
<td>CH-03</td>
</tr>
<tr>
<td>B</td>
<td>CH-04</td>
</tr>
<tr>
<td>B</td>
<td>DK-01</td>
</tr>
<tr>
<td>B</td>
<td>NO-01</td>
</tr>
<tr>
<td>B</td>
<td>NO-03</td>
</tr>
<tr>
<td>B</td>
<td>NO-04</td>
</tr>
<tr>
<td>B</td>
<td>NO-05</td>
</tr>
<tr>
<td>B</td>
<td>NO-06</td>
</tr>
<tr>
<td>B</td>
<td>NO-07</td>
</tr>
</tbody>
</table>
List of Sites by Heating Degree Days (Base 18 Degrees C)

<table>
<thead>
<tr>
<th>HDD</th>
<th>SITE</th>
<th>HDD</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5990</td>
<td>CD-02</td>
<td>3799</td>
<td>US/WA-09</td>
</tr>
<tr>
<td>5420</td>
<td>US/MN-01</td>
<td>3728</td>
<td>US/IA-01</td>
</tr>
<tr>
<td>5262</td>
<td>US/CO-13</td>
<td>3694</td>
<td>US/OR-13</td>
</tr>
<tr>
<td>5150</td>
<td>US/ND-01</td>
<td>3691</td>
<td>US/OR-15</td>
</tr>
<tr>
<td>4944</td>
<td>US/MN-04</td>
<td>3669</td>
<td>SW-05</td>
</tr>
<tr>
<td>4944</td>
<td>US/MN-05</td>
<td>3687</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>4836</td>
<td>US/VT-02</td>
<td>3667</td>
<td>US/NB-01</td>
</tr>
<tr>
<td>4799</td>
<td>NO-02</td>
<td>3660</td>
<td>CH-03</td>
</tr>
<tr>
<td>4799</td>
<td>NO-05</td>
<td>3660</td>
<td>CH-08</td>
</tr>
<tr>
<td>4799</td>
<td>NO-06</td>
<td>3660</td>
<td>CH-09</td>
</tr>
<tr>
<td>4799</td>
<td>NO-07</td>
<td>3650</td>
<td>CH-01</td>
</tr>
<tr>
<td>4722</td>
<td>US/VT-01</td>
<td>3650</td>
<td>CH-02</td>
</tr>
<tr>
<td>4718</td>
<td>US/CA-12</td>
<td>3600</td>
<td>SW-01</td>
</tr>
<tr>
<td>4674</td>
<td>CD-01</td>
<td>3600</td>
<td>SW-06</td>
</tr>
<tr>
<td>4660</td>
<td>US/WI-01</td>
<td>3560</td>
<td>CH-07</td>
</tr>
<tr>
<td>4660</td>
<td>US/WI-02</td>
<td>3553</td>
<td>US/IA-02</td>
</tr>
<tr>
<td>4592</td>
<td>US/NY-02</td>
<td>3553</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>4571</td>
<td>US/MN-03</td>
<td>3528</td>
<td>US/CT-01</td>
</tr>
<tr>
<td>4533</td>
<td>US/MN-02</td>
<td>3528</td>
<td>US/MA-05</td>
</tr>
<tr>
<td>4500</td>
<td>US/MT-01</td>
<td>3506</td>
<td>US/NM-02</td>
</tr>
<tr>
<td>4499</td>
<td>US/WI-04</td>
<td>3460</td>
<td>US/MI-01</td>
</tr>
<tr>
<td>4484</td>
<td>US/MT-02</td>
<td>3366</td>
<td>US/MA-03</td>
</tr>
<tr>
<td>4459</td>
<td>NO-04</td>
<td>3347</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>4459</td>
<td>NO-08</td>
<td>3347</td>
<td>US/NM-01</td>
</tr>
<tr>
<td>4294</td>
<td>US/WI-03</td>
<td>3342</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>4294</td>
<td>US/WI-05</td>
<td>3342</td>
<td>US/CO-03</td>
</tr>
<tr>
<td>4291</td>
<td>US/MT-03</td>
<td>3342</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>4282</td>
<td>US/WY-01</td>
<td>3342</td>
<td>US/CO-05</td>
</tr>
<tr>
<td>4240</td>
<td>CH-10</td>
<td>3342</td>
<td>US/CO-06</td>
</tr>
<tr>
<td>4237</td>
<td>NO-03</td>
<td>3342</td>
<td>US/CO-07</td>
</tr>
<tr>
<td>4200</td>
<td>NO-01</td>
<td>3342</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>4166</td>
<td>US/ME-01</td>
<td>3342</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>4100</td>
<td>SW-02</td>
<td>3342</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>4089</td>
<td>US/NH-01</td>
<td>3342</td>
<td>US/CO-11</td>
</tr>
<tr>
<td>4089</td>
<td>US/VT-03</td>
<td>3342</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>4047</td>
<td>US/NY-01</td>
<td>3342</td>
<td>US/CO-14</td>
</tr>
<tr>
<td>4000</td>
<td>CH-04</td>
<td>3342</td>
<td>US/CO-15</td>
</tr>
<tr>
<td>3944</td>
<td>US/OR-09</td>
<td>3342</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>3920</td>
<td>SW-03</td>
<td>3318</td>
<td>US/RI-02</td>
</tr>
<tr>
<td>3797</td>
<td>US/WA-01</td>
<td>3314</td>
<td>US/IL-01</td>
</tr>
<tr>
<td>3797</td>
<td>US/WA-02</td>
<td>3241</td>
<td>US/ID-01</td>
</tr>
<tr>
<td>3797</td>
<td>US/WA-03</td>
<td>3220</td>
<td>US/RI-01</td>
</tr>
<tr>
<td>3797</td>
<td>US/WA-04</td>
<td>3123</td>
<td>US/MA-04</td>
</tr>
<tr>
<td>3797</td>
<td>US/WA-05</td>
<td>3123</td>
<td>US/MA-06</td>
</tr>
<tr>
<td>3797</td>
<td>US/WA-06</td>
<td>3123</td>
<td>US/MA-07</td>
</tr>
<tr>
<td>3797</td>
<td>US/WA-07</td>
<td>3122</td>
<td>US/MA-01</td>
</tr>
<tr>
<td>3797</td>
<td>US/WA-08</td>
<td>3122</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>HDD</td>
<td>SITE</td>
<td>HDD</td>
<td>SITE</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>3056</td>
<td>US/MO-01</td>
<td>2188</td>
<td>US/VA-02</td>
</tr>
<tr>
<td>3006</td>
<td>SW-04</td>
<td>2188</td>
<td>US/VA-03</td>
</tr>
<tr>
<td>3006</td>
<td>SW-07</td>
<td>2147</td>
<td>US/VA-05</td>
</tr>
<tr>
<td>2976</td>
<td>US/KS-01</td>
<td>2100</td>
<td>BE-01</td>
</tr>
<tr>
<td>2976</td>
<td>US/KS-02</td>
<td>2100</td>
<td>BE-02</td>
</tr>
<tr>
<td>2829</td>
<td>DK-01</td>
<td>2100</td>
<td>BE-03</td>
</tr>
<tr>
<td>2829</td>
<td>DK-02</td>
<td>2069</td>
<td>US/OK-01</td>
</tr>
<tr>
<td>2829</td>
<td>DK-03</td>
<td>1952</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>2817</td>
<td>US/OH-01</td>
<td>1952</td>
<td>US/NC-02</td>
</tr>
<tr>
<td>2789</td>
<td>US/MO-09</td>
<td>1917</td>
<td>US/CA-17</td>
</tr>
<tr>
<td>2789</td>
<td>US/MO-10</td>
<td>1667</td>
<td>US/VA-02</td>
</tr>
<tr>
<td>2789</td>
<td>US/MO-11</td>
<td>1645</td>
<td>US/VA-01</td>
</tr>
<tr>
<td>2783</td>
<td>US/MO-02</td>
<td>1645</td>
<td>US/VA-03</td>
</tr>
<tr>
<td>2783</td>
<td>US/MO-03</td>
<td>1645</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>2783</td>
<td>US/MO-04</td>
<td>1601</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>2783</td>
<td>US/MO-05</td>
<td>1601</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>2783</td>
<td>US/MO-06</td>
<td>1601</td>
<td>US/CA-15</td>
</tr>
<tr>
<td>2783</td>
<td>US/MO-07</td>
<td>1601</td>
<td>US/CA-16</td>
</tr>
<tr>
<td>2783</td>
<td>US/MO-08</td>
<td>1579</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>2783</td>
<td>US/MO-09</td>
<td>1579</td>
<td>US/CA-04</td>
</tr>
<tr>
<td>2739</td>
<td>US/OR-16</td>
<td>1579</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>2720</td>
<td>CH-05</td>
<td>1566</td>
<td>US/CA-02</td>
</tr>
<tr>
<td>2720</td>
<td>CH-06</td>
<td>1550</td>
<td>US/CA-06</td>
</tr>
<tr>
<td>2696</td>
<td>US/OR-08</td>
<td>1548</td>
<td>US/CA-10</td>
</tr>
<tr>
<td>2694</td>
<td>US/OR-10</td>
<td>1380</td>
<td>US/SC-01</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-01</td>
<td>1262</td>
<td>US/TX-03</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-02</td>
<td>1066</td>
<td>US/CA-08</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-03</td>
<td>1066</td>
<td>US/CA-09</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-04</td>
<td>1028</td>
<td>US/CA-13</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-05</td>
<td>973</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-06</td>
<td>973</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-07</td>
<td>973</td>
<td>US/AZ-03</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-12</td>
<td>973</td>
<td>US/AZ-09</td>
</tr>
<tr>
<td>2662</td>
<td>US/OR-17</td>
<td>973</td>
<td>US/AZ-11</td>
</tr>
<tr>
<td>2633</td>
<td>US/OR-11</td>
<td>973</td>
<td>US/AZ-12</td>
</tr>
<tr>
<td>2604</td>
<td>US/CA-03</td>
<td>862</td>
<td>US/AZ-04</td>
</tr>
<tr>
<td>2604</td>
<td>US/OR-14</td>
<td>862</td>
<td>US/AZ-05</td>
</tr>
<tr>
<td>2506</td>
<td>US/CA-11</td>
<td>862</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>2500</td>
<td>US/VA-04</td>
<td>862</td>
<td>US/AZ-10</td>
</tr>
<tr>
<td>2477</td>
<td>US/NJ-01</td>
<td>861</td>
<td>US/TX-02</td>
</tr>
<tr>
<td>2476</td>
<td>US/AZ-06</td>
<td>776</td>
<td>US/TX-01</td>
</tr>
<tr>
<td>2347</td>
<td>US/MO-08</td>
<td>407</td>
<td>US/FL-01</td>
</tr>
<tr>
<td>CDD</td>
<td>SITE</td>
<td>CDD</td>
<td>SITE</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>1949</td>
<td>US/AZ-04</td>
<td>496</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>1949</td>
<td>US/AZ-05</td>
<td>490</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>1949</td>
<td>US/AZ-08</td>
<td>483</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>1944</td>
<td>US/AZ-10</td>
<td>483</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>1563</td>
<td>US/AZ-01</td>
<td>483</td>
<td>US/CA-15</td>
</tr>
<tr>
<td>1563</td>
<td>US/AZ-02</td>
<td>483</td>
<td>US/CA-16</td>
</tr>
<tr>
<td>1563</td>
<td>US/AZ-03</td>
<td>419</td>
<td>US/CA-11</td>
</tr>
<tr>
<td>1563</td>
<td>US/AZ-09</td>
<td>419</td>
<td>US/CA-17</td>
</tr>
<tr>
<td>1563</td>
<td>US/AZ-11</td>
<td>368</td>
<td>US/AZ-07</td>
</tr>
<tr>
<td>1563</td>
<td>US/AZ-12</td>
<td>367</td>
<td>US/MA-01</td>
</tr>
<tr>
<td>1500</td>
<td>US/TX-03</td>
<td>367</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>1002</td>
<td>US/CA-10</td>
<td>347</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>883</td>
<td>US/GA-01</td>
<td>347</td>
<td>US/CO-03</td>
</tr>
<tr>
<td>883</td>
<td>US/GA-02</td>
<td>347</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>736</td>
<td>US/CA-08</td>
<td>347</td>
<td>US/CO-05</td>
</tr>
<tr>
<td>736</td>
<td>US/CA-09</td>
<td>347</td>
<td>US/CO-06</td>
</tr>
<tr>
<td>700</td>
<td>US/CA-06</td>
<td>347</td>
<td>US/CO-07</td>
</tr>
<tr>
<td>644</td>
<td>US/CA-01</td>
<td>347</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>644</td>
<td>US/CA-04</td>
<td>347</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>644</td>
<td>US/CA-05</td>
<td>347</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>600</td>
<td>US/CH-01</td>
<td>347</td>
<td>US/CO-11</td>
</tr>
<tr>
<td>592</td>
<td>US/CA-02</td>
<td>347</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>584</td>
<td>US/IL-01</td>
<td>347</td>
<td>US/CO-14</td>
</tr>
<tr>
<td>569</td>
<td>US/NJ-01</td>
<td>347</td>
<td>US/CO-15</td>
</tr>
<tr>
<td>552</td>
<td>US/MD-02</td>
<td>347</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>552</td>
<td>US/MD-03</td>
<td>262</td>
<td>US/ND-01</td>
</tr>
<tr>
<td>552</td>
<td>US/MD-04</td>
<td>260</td>
<td>US/CA-12</td>
</tr>
<tr>
<td>552</td>
<td>US/MD-05</td>
<td>256</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>552</td>
<td>US/MD-06</td>
<td>242</td>
<td>CD-01</td>
</tr>
<tr>
<td>552</td>
<td>US/MD-07</td>
<td>239</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>552</td>
<td>US/MD-08</td>
<td>205</td>
<td>US/NY-01</td>
</tr>
<tr>
<td>522</td>
<td>US/MD-09</td>
<td>176</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>522</td>
<td>US/MD-10</td>
<td>149</td>
<td>US/CA-13</td>
</tr>
<tr>
<td>522</td>
<td>US/MD-11</td>
<td>129</td>
<td>US/OR-08</td>
</tr>
<tr>
<td>522</td>
<td>US/VA-01</td>
<td>30</td>
<td>CD-02</td>
</tr>
</tbody>
</table>
List of Sites by Global Solar Radiation (kWh/m²)

<table>
<thead>
<tr>
<th>Site</th>
<th>GSR</th>
<th>Site</th>
<th>GSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>US/AZ-07</td>
<td>No Value</td>
<td>US/OR-05</td>
<td>1213</td>
</tr>
<tr>
<td>US/CA-11</td>
<td>No Value</td>
<td>US/OR-06</td>
<td>1213</td>
</tr>
<tr>
<td>US/CO-13</td>
<td>No Value</td>
<td>US/OR-04</td>
<td>1213</td>
</tr>
<tr>
<td>US/AZ-10</td>
<td>No Value</td>
<td>US/OR-02</td>
<td>1213</td>
</tr>
<tr>
<td>US/CA-17</td>
<td>No Value</td>
<td>US/MA-03</td>
<td>1219</td>
</tr>
<tr>
<td>NO-04</td>
<td>No Value</td>
<td>US/CT-01</td>
<td>1219</td>
</tr>
<tr>
<td>NO-01</td>
<td>No Value</td>
<td>US/MA-05</td>
<td>1219</td>
</tr>
<tr>
<td>SW-05</td>
<td>No Value</td>
<td>US/MN-01</td>
<td>1224</td>
</tr>
<tr>
<td>SW-06</td>
<td>780</td>
<td>US/OR-17</td>
<td>1230</td>
</tr>
<tr>
<td>SW-01</td>
<td>849</td>
<td>US/OR-12</td>
<td>1241</td>
</tr>
<tr>
<td>NO-03</td>
<td>902</td>
<td>US/MA-01</td>
<td>1272</td>
</tr>
<tr>
<td>NO-07</td>
<td>911</td>
<td>US/MA-02</td>
<td>1272</td>
</tr>
<tr>
<td>NO-06</td>
<td>911</td>
<td>US/MA-04</td>
<td>1272</td>
</tr>
<tr>
<td>NO-05</td>
<td>911</td>
<td>US/MA-07</td>
<td>1272</td>
</tr>
<tr>
<td>NO-02</td>
<td>912</td>
<td>US/MA-06</td>
<td>1272</td>
</tr>
<tr>
<td>SW-03</td>
<td>960</td>
<td>US/RI-01</td>
<td>1280</td>
</tr>
<tr>
<td>BE-02</td>
<td>975</td>
<td>US/RI-02</td>
<td>1281</td>
</tr>
<tr>
<td>BE-03</td>
<td>975</td>
<td>US/MI-01</td>
<td>1290</td>
</tr>
<tr>
<td>BE-01</td>
<td>975</td>
<td>CD-02</td>
<td>1298</td>
</tr>
<tr>
<td>SW-02</td>
<td>990</td>
<td>CH-05</td>
<td>1300</td>
</tr>
<tr>
<td>NO-08</td>
<td>990</td>
<td>CH-06</td>
<td>1300</td>
</tr>
<tr>
<td>DK-02</td>
<td>1018</td>
<td>US/WI-01</td>
<td>1304</td>
</tr>
<tr>
<td>DK-01</td>
<td>1018</td>
<td>US/WI-02</td>
<td>1304</td>
</tr>
<tr>
<td>DK-03</td>
<td>1018</td>
<td>US/MN-04</td>
<td>1307</td>
</tr>
<tr>
<td>US/NJ-01</td>
<td>1067</td>
<td>US/MN-05</td>
<td>1307</td>
</tr>
<tr>
<td>CH-10</td>
<td>1090</td>
<td>US/OR-11</td>
<td>1314</td>
</tr>
<tr>
<td>SW-04</td>
<td>1092</td>
<td>US/OR-10</td>
<td>1314</td>
</tr>
<tr>
<td>SW-07</td>
<td>1092</td>
<td>US/WI-04</td>
<td>1317</td>
</tr>
<tr>
<td>CH-03</td>
<td>1110</td>
<td>CD-01</td>
<td>1328</td>
</tr>
<tr>
<td>CH-01</td>
<td>1110</td>
<td>US/MN-03</td>
<td>1331</td>
</tr>
<tr>
<td>CH-09</td>
<td>1114</td>
<td>US/OH-01</td>
<td>1332</td>
</tr>
<tr>
<td>CH-02</td>
<td>1115</td>
<td>US/MN-02</td>
<td>1348</td>
</tr>
<tr>
<td>US/NY-01</td>
<td>1145</td>
<td>US/WI-05</td>
<td>1372</td>
</tr>
<tr>
<td>CH-08</td>
<td>1166</td>
<td>US/WI-03</td>
<td>1372</td>
</tr>
<tr>
<td>CH-07</td>
<td>1168</td>
<td>US/ND-01</td>
<td>1384</td>
</tr>
<tr>
<td>US/NY-02</td>
<td>1187</td>
<td>US/MD-09</td>
<td>1390</td>
</tr>
<tr>
<td>CH-04</td>
<td>1190</td>
<td>US/MD-11</td>
<td>1390</td>
</tr>
<tr>
<td>US/VT-01</td>
<td>1203</td>
<td>US/VA-01</td>
<td>1390</td>
</tr>
<tr>
<td>US/ME-01</td>
<td>1210</td>
<td>US/MD-10</td>
<td>1390</td>
</tr>
<tr>
<td>US/VT-02</td>
<td>1212</td>
<td>US/OR-08</td>
<td>1390</td>
</tr>
<tr>
<td>US/VT-03</td>
<td>1213</td>
<td>US/MD-05</td>
<td>1391</td>
</tr>
<tr>
<td>US/OR-03</td>
<td>1213</td>
<td>US/MD-04</td>
<td>1391</td>
</tr>
<tr>
<td>US/NH-01</td>
<td>1213</td>
<td>US/MD-03</td>
<td>1391</td>
</tr>
<tr>
<td>SITE</td>
<td>GSR</td>
<td>SITE</td>
<td>GSR</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>US/VA-04</td>
<td>1391</td>
<td>US/OR-09</td>
<td>1606</td>
</tr>
<tr>
<td>US/MD-06</td>
<td>1391</td>
<td>US/CO-17</td>
<td>1638</td>
</tr>
<tr>
<td>US/MD-02</td>
<td>1391</td>
<td>US/AK-01</td>
<td>1682</td>
</tr>
<tr>
<td>US/MD-07</td>
<td>1391</td>
<td>US/FL-01</td>
<td>1711</td>
</tr>
<tr>
<td>US/CA-03</td>
<td>1405</td>
<td>US/ID-01</td>
<td>1724</td>
</tr>
<tr>
<td>US/IA-02</td>
<td>1410</td>
<td>US/TX-02</td>
<td>1726</td>
</tr>
<tr>
<td>US/WA-04</td>
<td>1411</td>
<td>US/CA-13</td>
<td>1764</td>
</tr>
<tr>
<td>US/WA-09</td>
<td>1411</td>
<td>US/NM-02</td>
<td>1765</td>
</tr>
<tr>
<td>US/WA-01</td>
<td>1411</td>
<td>US/NM-01</td>
<td>1765</td>
</tr>
<tr>
<td>US/WA-02</td>
<td>1411</td>
<td>US/CO-01</td>
<td>1803</td>
</tr>
<tr>
<td>US/WA-05</td>
<td>1411</td>
<td>US/CO-09</td>
<td>1805</td>
</tr>
<tr>
<td>US/WA-06</td>
<td>1411</td>
<td>US/CO-14</td>
<td>1805</td>
</tr>
<tr>
<td>US/WA-07</td>
<td>1411</td>
<td>US/CO-03</td>
<td>1805</td>
</tr>
<tr>
<td>US/WA-03</td>
<td>1411</td>
<td>US/CO-02</td>
<td>1805</td>
</tr>
<tr>
<td>US/WA-08</td>
<td>1411</td>
<td>US/CO-12</td>
<td>1805</td>
</tr>
<tr>
<td>US/IA-03</td>
<td>1433</td>
<td>US/CO-10</td>
<td>1805</td>
</tr>
<tr>
<td>US/VA-02</td>
<td>1435</td>
<td>US/CO-07</td>
<td>1805</td>
</tr>
<tr>
<td>US/VA-03</td>
<td>1435</td>
<td>US/CO-06</td>
<td>1805</td>
</tr>
<tr>
<td>US/VA-05</td>
<td>1437</td>
<td>US/CO-16</td>
<td>1805</td>
</tr>
<tr>
<td>US/OR-14</td>
<td>1450</td>
<td>US/CO-05</td>
<td>1805</td>
</tr>
<tr>
<td>US/MT-02</td>
<td>1456</td>
<td>US/CO-15</td>
<td>1805</td>
</tr>
<tr>
<td>US/MT-01</td>
<td>1456</td>
<td>US/CO-04</td>
<td>1805</td>
</tr>
<tr>
<td>US/TN-01</td>
<td>1466</td>
<td>US/CO-08</td>
<td>1805</td>
</tr>
<tr>
<td>US/NC-02</td>
<td>1491</td>
<td>US/CO-11</td>
<td>1805</td>
</tr>
<tr>
<td>US/NC-01</td>
<td>1491</td>
<td>US/CA-05</td>
<td>1830</td>
</tr>
<tr>
<td>US/IL-01</td>
<td>1499</td>
<td>US/CA-04</td>
<td>1830</td>
</tr>
<tr>
<td>US/NC-03</td>
<td>1510</td>
<td>US/CA-07</td>
<td>1832</td>
</tr>
<tr>
<td>US/IA-01</td>
<td>1511</td>
<td>US/CA-14</td>
<td>1832</td>
</tr>
<tr>
<td>US/NB-01</td>
<td>1521</td>
<td>US/CA-15</td>
<td>1832</td>
</tr>
<tr>
<td>US/MT-03</td>
<td>1527</td>
<td>US/CA-16</td>
<td>1832</td>
</tr>
<tr>
<td>US/WY-01</td>
<td>1533</td>
<td>US/CA-09</td>
<td>1862</td>
</tr>
<tr>
<td>US/KS-02</td>
<td>1543</td>
<td>US/CA-08</td>
<td>1862</td>
</tr>
<tr>
<td>US/KS-01</td>
<td>1543</td>
<td>US/AZ-06</td>
<td>1867</td>
</tr>
<tr>
<td>US/GA-01</td>
<td>1548</td>
<td>US/CA-01</td>
<td>1889</td>
</tr>
<tr>
<td>US/GA-03</td>
<td>1548</td>
<td>US/CA-02</td>
<td>1892</td>
</tr>
<tr>
<td>US/GA-04</td>
<td>1548</td>
<td>US/CA-06</td>
<td>1893</td>
</tr>
<tr>
<td>US/GA-02</td>
<td>1549</td>
<td>US/TX-03</td>
<td>1913</td>
</tr>
<tr>
<td>US/TX-01</td>
<td>1556</td>
<td>US/CA-12</td>
<td>2028</td>
</tr>
<tr>
<td>US/OR-16</td>
<td>1559</td>
<td>US/AZ-02</td>
<td>2154</td>
</tr>
<tr>
<td>US/CA-10</td>
<td>1559</td>
<td>US/AZ-01</td>
<td>2154</td>
</tr>
<tr>
<td>US/AZ-08</td>
<td>1576</td>
<td>US/AZ-03</td>
<td>2154</td>
</tr>
<tr>
<td>US/AZ-04</td>
<td>1576</td>
<td>US/AZ-09</td>
<td>2155</td>
</tr>
<tr>
<td>US/SC-01</td>
<td>1589</td>
<td>US/AZ-05</td>
<td>2155</td>
</tr>
</tbody>
</table>
List of Sites by Aperture/Floor Area Ratio

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Site</th>
<th>Ratio</th>
<th>Site</th>
<th>Ratio</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.68</td>
<td>BE-01</td>
<td>0.17</td>
<td>US/CO-11</td>
<td>0.11</td>
<td>CH-01</td>
</tr>
<tr>
<td>0.42</td>
<td>US/MN-01</td>
<td>0.16</td>
<td>US/GA-02</td>
<td>0.10</td>
<td>US/VT-03</td>
</tr>
<tr>
<td>0.41</td>
<td>US/CA-02</td>
<td>0.16</td>
<td>US/AZ-03</td>
<td>0.10</td>
<td>US/KS-05</td>
</tr>
<tr>
<td>0.40</td>
<td>US/AZ-06</td>
<td>0.16</td>
<td>US/IA-03</td>
<td>0.10</td>
<td>US/KS-02</td>
</tr>
<tr>
<td>0.39</td>
<td>SW-05</td>
<td>0.16</td>
<td>US/OR-17</td>
<td>0.10</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>0.35</td>
<td>US/VA-01</td>
<td>0.16</td>
<td>US/CA-01</td>
<td>0.10</td>
<td>CH-08</td>
</tr>
<tr>
<td>0.33</td>
<td>US/CA-13</td>
<td>0.16</td>
<td>US/SC-01</td>
<td>0.10</td>
<td>SW-07</td>
</tr>
<tr>
<td>0.32</td>
<td>US/MD-08</td>
<td>0.16</td>
<td>US/NH-01</td>
<td>0.10</td>
<td>US/IL-01</td>
</tr>
<tr>
<td>0.31</td>
<td>BE-03</td>
<td>0.16</td>
<td>SW-01</td>
<td>0.10</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>0.30</td>
<td>US/NY-01</td>
<td>0.16</td>
<td>US/VA-02</td>
<td>0.10</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>0.29</td>
<td>US/MT-03</td>
<td>0.15</td>
<td>US/MA-05</td>
<td>0.09</td>
<td>US/AZ-12</td>
</tr>
<tr>
<td>0.27</td>
<td>CH-10</td>
<td>0.15</td>
<td>US/CA-15</td>
<td>0.09</td>
<td>CD-01</td>
</tr>
<tr>
<td>0.26</td>
<td>US/RJ-01</td>
<td>0.15</td>
<td>US/CA-17</td>
<td>0.09</td>
<td>NO-07</td>
</tr>
<tr>
<td>0.25</td>
<td>NO-05</td>
<td>0.15</td>
<td>US/CO-06</td>
<td>0.09</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>0.25</td>
<td>NO-06</td>
<td>0.15</td>
<td>US/CO-02</td>
<td>0.09</td>
<td>US/TX-01</td>
</tr>
<tr>
<td>0.25</td>
<td>US/NJ-01</td>
<td>0.15</td>
<td>US/RJ-02</td>
<td>0.09</td>
<td>US/IA-02</td>
</tr>
<tr>
<td>0.25</td>
<td>US/OH-01</td>
<td>0.15</td>
<td>SW-03</td>
<td>0.08</td>
<td>US/WI-02</td>
</tr>
<tr>
<td>0.25</td>
<td>US/CA-10</td>
<td>0.14</td>
<td>US/CA-05</td>
<td>0.08</td>
<td>US/MD-01</td>
</tr>
<tr>
<td>0.24</td>
<td>US/MA-01</td>
<td>0.14</td>
<td>US/CO-05</td>
<td>0.08</td>
<td>US/TX-03</td>
</tr>
<tr>
<td>0.24</td>
<td>US/AZ-07</td>
<td>0.14</td>
<td>US/CO-15</td>
<td>0.08</td>
<td>US/MD-10</td>
</tr>
<tr>
<td>0.23</td>
<td>US/CA-12</td>
<td>0.14</td>
<td>US/MN-03</td>
<td>0.08</td>
<td>SW-02</td>
</tr>
<tr>
<td>0.23</td>
<td>US/CO-13</td>
<td>0.14</td>
<td>US/NB-01</td>
<td>0.07</td>
<td>US/OR-01</td>
</tr>
<tr>
<td>0.23</td>
<td>BE-02</td>
<td>0.14</td>
<td>US/OR-08</td>
<td>0.07</td>
<td>CH-06</td>
</tr>
<tr>
<td>0.22</td>
<td>US/MA-02</td>
<td>0.14</td>
<td>NO-02</td>
<td>0.07</td>
<td>US/TX-02</td>
</tr>
<tr>
<td>0.22</td>
<td>US/CJ-07</td>
<td>0.14</td>
<td>NO-08</td>
<td>0.07</td>
<td>US/MD-01</td>
</tr>
<tr>
<td>0.22</td>
<td>US/CO-17</td>
<td>0.13</td>
<td>US/NA-01</td>
<td>0.07</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>0.22</td>
<td>US/IA-01</td>
<td>0.13</td>
<td>US/AZ-10</td>
<td>0.07</td>
<td>US/GA-03</td>
</tr>
<tr>
<td>0.22</td>
<td>US/MI-01</td>
<td>0.13</td>
<td>US/NC-03</td>
<td>0.07</td>
<td>US/NY-02</td>
</tr>
<tr>
<td>0.21</td>
<td>US/VA-05</td>
<td>0.13</td>
<td>US/MA-03</td>
<td>0.06</td>
<td>US/VT-02</td>
</tr>
<tr>
<td>0.21</td>
<td>US/CA-03</td>
<td>0.13</td>
<td>US/NC-01</td>
<td>0.05</td>
<td>US/MD-02</td>
</tr>
<tr>
<td>0.21</td>
<td>US/NM-01</td>
<td>0.13</td>
<td>US/CT-01</td>
<td>0.05</td>
<td>US/MD-03</td>
</tr>
<tr>
<td>0.21</td>
<td>CH-09</td>
<td>0.13</td>
<td>US/MA-06</td>
<td>0.05</td>
<td>US/MD-04</td>
</tr>
<tr>
<td>0.20</td>
<td>US/CO-03</td>
<td>0.13</td>
<td>US/ME-01</td>
<td>0.05</td>
<td>US/MD-05</td>
</tr>
<tr>
<td>0.20</td>
<td>US/CO-01</td>
<td>0.12</td>
<td>US/CA-08</td>
<td>0.05</td>
<td>US/MD-07</td>
</tr>
<tr>
<td>0.19</td>
<td>US/NC-01</td>
<td>0.12</td>
<td>US/TN-01</td>
<td>0.05</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>0.19</td>
<td>US/NM-02</td>
<td>0.12</td>
<td>US/CO-03</td>
<td>0.05</td>
<td>US/CO-14</td>
</tr>
<tr>
<td>0.19</td>
<td>US/MA-04</td>
<td>0.12</td>
<td>US/MD-11</td>
<td>0.05</td>
<td>CH-07</td>
</tr>
<tr>
<td>0.19</td>
<td>US/VA-01</td>
<td>0.12</td>
<td>US/MN-02</td>
<td>0.04</td>
<td>CH-02</td>
</tr>
<tr>
<td>0.19</td>
<td>US/VA-04</td>
<td>0.12</td>
<td>US/MA-07</td>
<td>0.04</td>
<td>GA-04</td>
</tr>
<tr>
<td>0.19</td>
<td>US/CA-04</td>
<td>0.12</td>
<td>US/CO-03</td>
<td>0.04</td>
<td>US/MD-09</td>
</tr>
<tr>
<td>0.19</td>
<td>US/VA-16</td>
<td>0.11</td>
<td>DK-01</td>
<td>0.04</td>
<td>DK-03</td>
</tr>
<tr>
<td>0.18</td>
<td>US/OR-15</td>
<td>0.11</td>
<td>CD-02</td>
<td>0.04</td>
<td>US/VT-01</td>
</tr>
<tr>
<td>0.18</td>
<td>US/OK-01</td>
<td>0.11</td>
<td>US/WI-03</td>
<td>0.03</td>
<td>SW-04</td>
</tr>
<tr>
<td>0.18</td>
<td>US/CO-08</td>
<td>0.11</td>
<td>US/CO-04</td>
<td>0.03</td>
<td>US/CA-16</td>
</tr>
<tr>
<td>0.18</td>
<td>US/CA-11</td>
<td>0.11</td>
<td>US/CA-14</td>
<td>0.03</td>
<td>SW-06</td>
</tr>
<tr>
<td>0.17</td>
<td>US/GA-01</td>
<td>0.11</td>
<td>US/MD-06</td>
<td>0.03</td>
<td>US/CA-09</td>
</tr>
<tr>
<td>0.17</td>
<td>NO-04</td>
<td>0.11</td>
<td>US/AZ-04</td>
<td>0.02</td>
<td>CH-05</td>
</tr>
<tr>
<td>0.17</td>
<td>US/WY-01</td>
<td>0.11</td>
<td>US/CO-10</td>
<td>0.02</td>
<td>US/AZ-11</td>
</tr>
<tr>
<td>0.17</td>
<td>US/WI-04</td>
<td>0.11</td>
<td>US/CO-07</td>
<td>0.02</td>
<td>24</td>
</tr>
</tbody>
</table>
LIST OF SITES BY HEATED FLOOR AREA (M²)

<table>
<thead>
<tr>
<th>AREA</th>
<th>SITE</th>
<th>AREA</th>
<th>SITE</th>
<th>AREA</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4500</td>
<td>DK-02</td>
<td>170</td>
<td>US/CO-02</td>
<td>120</td>
<td>NO-05</td>
</tr>
<tr>
<td>1040</td>
<td>NO-08</td>
<td>168</td>
<td>US/WI-01</td>
<td>120</td>
<td>NO-06</td>
</tr>
<tr>
<td>978</td>
<td>CH-02</td>
<td>168</td>
<td>BE-03</td>
<td>120</td>
<td>US/FL-01</td>
</tr>
<tr>
<td>861</td>
<td>SW-07</td>
<td>168</td>
<td>US/CA-03</td>
<td>119</td>
<td>US/CO-14</td>
</tr>
<tr>
<td>401</td>
<td>SW-05</td>
<td>167</td>
<td>US/CA-04</td>
<td>119</td>
<td>US/MN-03</td>
</tr>
<tr>
<td>368</td>
<td>US/GA-04</td>
<td>167</td>
<td>US/ND-01</td>
<td>118</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>317</td>
<td>US/GA-01</td>
<td>165</td>
<td>BE-01</td>
<td>118</td>
<td>US/OR-01</td>
</tr>
<tr>
<td>306</td>
<td>US/CO-04</td>
<td>165</td>
<td>SW-06</td>
<td>117</td>
<td>SW-04</td>
</tr>
<tr>
<td>301</td>
<td>US/CO-05</td>
<td>162</td>
<td>US/CT-01</td>
<td>115</td>
<td>US/VA-05</td>
</tr>
<tr>
<td>273</td>
<td>US/MA-07</td>
<td>162</td>
<td>US/CO-12</td>
<td>115</td>
<td>US/MT-03</td>
</tr>
<tr>
<td>269</td>
<td>US/NE-01</td>
<td>160</td>
<td>CH-01</td>
<td>114</td>
<td>US/IA-02</td>
</tr>
<tr>
<td>269</td>
<td>US/MI-01</td>
<td>158</td>
<td>US/CA-01</td>
<td>113</td>
<td>SW-01</td>
</tr>
<tr>
<td>265</td>
<td>US/CO-07</td>
<td>158</td>
<td>US/IA-03</td>
<td>113</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>257</td>
<td>US/CO-09</td>
<td>155</td>
<td>SW-02</td>
<td>112</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>257</td>
<td>US/SC-01</td>
<td>155</td>
<td>US/CA-08</td>
<td>111</td>
<td>US/CA-16</td>
</tr>
<tr>
<td>240</td>
<td>BE-02</td>
<td>154</td>
<td>US/CA-09</td>
<td>111</td>
<td>US/TN-01</td>
</tr>
<tr>
<td>238</td>
<td>US/MD-01</td>
<td>153</td>
<td>US/MN-02</td>
<td>110</td>
<td>NO-04</td>
</tr>
<tr>
<td>232</td>
<td>US/CO-17</td>
<td>152</td>
<td>US/NC-02</td>
<td>110</td>
<td>US/R1-02</td>
</tr>
<tr>
<td>232</td>
<td>US/OK-01</td>
<td>151</td>
<td>US/TX-03</td>
<td>110</td>
<td>US/VA-02</td>
</tr>
<tr>
<td>218</td>
<td>US/CO-13</td>
<td>150</td>
<td>DK-01</td>
<td>108</td>
<td>US/CA-12</td>
</tr>
<tr>
<td>214</td>
<td>US/NM-01</td>
<td>150</td>
<td>US/CA-02</td>
<td>106</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>214</td>
<td>US/VA-01</td>
<td>149</td>
<td>US/DH-01</td>
<td>101</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>211</td>
<td>US/GA-02</td>
<td>148</td>
<td>US/AZ-11</td>
<td>100</td>
<td>DK-03</td>
</tr>
<tr>
<td>209</td>
<td>US/KS-01</td>
<td>148</td>
<td>US/AZ-12</td>
<td>100</td>
<td>NO-03</td>
</tr>
<tr>
<td>205</td>
<td>US/MA-06</td>
<td>147</td>
<td>US/MD-09</td>
<td>98</td>
<td>CD-02</td>
</tr>
<tr>
<td>204</td>
<td>US/GA-03</td>
<td>147</td>
<td>US/MD-10</td>
<td>98</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>204</td>
<td>US/WY-01</td>
<td>147</td>
<td>US/MD-11</td>
<td>95</td>
<td>US/AZ-05</td>
</tr>
<tr>
<td>202</td>
<td>US/KS-02</td>
<td>145</td>
<td>US/VT-01</td>
<td>94</td>
<td>US/WI-02</td>
</tr>
<tr>
<td>200</td>
<td>US/CO-15</td>
<td>144</td>
<td>US/WI-03</td>
<td>93</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>200</td>
<td>US/OR-16</td>
<td>144</td>
<td>US/WI-05</td>
<td>93</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>196</td>
<td>US/TX-01</td>
<td>143</td>
<td>US/ME-01</td>
<td>93</td>
<td>US/AZ-03</td>
</tr>
<tr>
<td>195</td>
<td>US/MA-04</td>
<td>143</td>
<td>US/VA-03</td>
<td>93</td>
<td>US/AZ-09</td>
</tr>
<tr>
<td>195</td>
<td>US/CA-11</td>
<td>141</td>
<td>US/AZ-04</td>
<td>93</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>190</td>
<td>US/NJ-01</td>
<td>140</td>
<td>NO-07</td>
<td>83</td>
<td>US/NJ-03</td>
</tr>
<tr>
<td>190</td>
<td>CH-10</td>
<td>140</td>
<td>CH-07</td>
<td>83</td>
<td>US/NJ-01</td>
</tr>
<tr>
<td>189</td>
<td>US/CO-11</td>
<td>140</td>
<td>CH-09</td>
<td>78</td>
<td>US/CA-13</td>
</tr>
<tr>
<td>188</td>
<td>US/NC-01</td>
<td>139</td>
<td>US/OR-08</td>
<td>74</td>
<td>US/TX-02</td>
</tr>
<tr>
<td>188</td>
<td>US/WI-04</td>
<td>139</td>
<td>US/CA-17</td>
<td>59</td>
<td>US/MA-03</td>
</tr>
<tr>
<td>186</td>
<td>US/R1-01</td>
<td>134</td>
<td>US/VT-02</td>
<td>47</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>186</td>
<td>US/AZ-10</td>
<td>132</td>
<td>US/CA-05</td>
<td>37</td>
<td>US/MD-02</td>
</tr>
<tr>
<td>182</td>
<td>US/NM-02</td>
<td>132</td>
<td>US/CA-15</td>
<td>37</td>
<td>US/MD-03</td>
</tr>
<tr>
<td>180</td>
<td>CH-08</td>
<td>128</td>
<td>US/WA-01</td>
<td>37</td>
<td>US/MD-04</td>
</tr>
<tr>
<td>179</td>
<td>US/NH-01</td>
<td>128</td>
<td>US/CA-10</td>
<td>37</td>
<td>US/MD-05</td>
</tr>
<tr>
<td>176</td>
<td>US/AZ-07</td>
<td>126</td>
<td>US/CO-03</td>
<td>37</td>
<td>US/MD-06</td>
</tr>
<tr>
<td>175</td>
<td>SW-03</td>
<td>126</td>
<td>US/NY-01</td>
<td>37</td>
<td>US/MD-07</td>
</tr>
<tr>
<td>174</td>
<td>US/CO-06</td>
<td>125</td>
<td>US/OR-15</td>
<td>31</td>
<td>US/MD-08</td>
</tr>
<tr>
<td>173</td>
<td>US/CO-01</td>
<td>125</td>
<td>US/MA-05</td>
<td>28</td>
<td>CD-01</td>
</tr>
<tr>
<td>172</td>
<td>US/OR-13</td>
<td>121</td>
<td>US/MN-01</td>
<td>17</td>
<td>NO-02</td>
</tr>
<tr>
<td>172</td>
<td>US/IL-01</td>
<td>121</td>
<td>US/OR-17</td>
<td>10</td>
<td>CH-05</td>
</tr>
<tr>
<td>171</td>
<td>US/IA-01</td>
<td>121</td>
<td>US/CO-10</td>
<td>10</td>
<td>CH-06</td>
</tr>
<tr>
<td>GHLC</td>
<td>SITE CODE</td>
<td>GHLC</td>
<td>SITE CODE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>NO-02</td>
<td>191</td>
<td>CH-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>CD-01</td>
<td>197</td>
<td>US/CO-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>US/MA-02</td>
<td>212</td>
<td>US/CA-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>US/MA-03</td>
<td>218</td>
<td>US/CA-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>US/MA-01</td>
<td>220</td>
<td>US/CA-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>US/SC-01</td>
<td>227</td>
<td>US/CA-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>US/MD-08</td>
<td>232</td>
<td>US/CO-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>US/VA-01</td>
<td>233</td>
<td>US/VA-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>SW-04</td>
<td>244</td>
<td>US/IA-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>SW-01</td>
<td>251</td>
<td>US/CT-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>ND-03</td>
<td>252</td>
<td>US/NB-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>DK-03</td>
<td>253</td>
<td>US/CO-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>US/MT-03</td>
<td>262</td>
<td>US/MT-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>US/VT-02</td>
<td>263</td>
<td>US/MA-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>US/WA-01</td>
<td>265</td>
<td>US/CO-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>US/MN-02</td>
<td>270</td>
<td>US/CA-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>SW-03</td>
<td>277</td>
<td>US/CA-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>CD-02</td>
<td>284</td>
<td>US/CO-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>US/MA-05</td>
<td>290</td>
<td>US/CO-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>US/WI-02</td>
<td>291</td>
<td>US/CA-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>DK-01</td>
<td>292</td>
<td>US/TX-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>US/OR-11</td>
<td>300</td>
<td>CH-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>US/CO-08</td>
<td>307</td>
<td>US/CA-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>US/OR-01</td>
<td>309</td>
<td>US/CO-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>US/NH-01</td>
<td>309</td>
<td>BE-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>US/ID-01</td>
<td>310</td>
<td>US/CA-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>SW-02</td>
<td>322</td>
<td>US/OR-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>US/VT-03</td>
<td>327</td>
<td>US/CO-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>SW-06</td>
<td>331</td>
<td>US/MA-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>US/ME-01</td>
<td>339</td>
<td>BE-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>BE-02</td>
<td>339</td>
<td>US/OR-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>US/OH-01</td>
<td>343</td>
<td>US/NC-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>US/ND-01</td>
<td>364</td>
<td>US/GA-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>US/IA-02</td>
<td>369</td>
<td>US/CO-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>US/OR-10</td>
<td>371</td>
<td>CH-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>US/VA-04</td>
<td>385</td>
<td>US/CA-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>US/WI-01</td>
<td>403</td>
<td>US/OR-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>US/NC-03</td>
<td>405</td>
<td>US/TX-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>US/RI-02</td>
<td>413</td>
<td>US/CO-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>US/CA-16</td>
<td>423</td>
<td>US/CO-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>US/NY-02</td>
<td>426</td>
<td>US/AZ-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>US/CA-15</td>
<td>443</td>
<td>US/GA-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>US/TN-01</td>
<td>504</td>
<td>US/CA-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>CH-09</td>
<td>530</td>
<td>US/GA-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>US/CA-10</td>
<td>646</td>
<td>US/OK-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>US/CO-10</td>
<td>830</td>
<td>SW-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive Heating System Type</td>
<td>Site Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>convective air heater; mass wall; direct gain</td>
<td>US/AZ-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>convective air heater; direct gain; hybrid</td>
<td>CH-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>CH-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>DK-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>DK-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>NO-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>NO-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>NO-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>SW-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>SW-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/AZ-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/AZ-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CO-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CO-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CO-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CO-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CO-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/IA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/IA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/IL-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/KS-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MA-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MN-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MN-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/NC-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/NC-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/ND-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/NY-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/NY-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/OK-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/OR-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/OR-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/OR-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/OR-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/OR-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/OR-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/OR-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/TX-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/VT-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/VT-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/VT-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/WA-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive Heating System Type</td>
<td>Site Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>CD-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>DK-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>NO-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>SW-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/AZ-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/AZ-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CA-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CO-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/CO-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MA-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/MD-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/WI-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/WI-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain</td>
<td>US/WI-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; convective air heater; hybrid</td>
<td>CH-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; half mass wall</td>
<td>US/NC-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; hybrid</td>
<td>CH-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; hybrid</td>
<td>CH-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/CA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/CA-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/CA-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/CO-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/CO-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/GA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/IA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/MA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/MD-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/MN-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/MN-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/NM-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall</td>
<td>US/VA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall (water)</td>
<td>US/VA-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall (water)</td>
<td>US/VA-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; mass wall; convective air heater</td>
<td>US/AZ-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; roof pond</td>
<td>US/TX-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>BE-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>CD-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>CH-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>CH-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>NO-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>SN-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>US/AZ-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>US/CA-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>US/CO-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>US/CO-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>US/NM-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>US/OR-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASSIVE HEATING SYSTEM TYPE</td>
<td>SITE CODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>BE-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>CH-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>CH-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>CH-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>SW-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>SW-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace</td>
<td>SW-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/CA-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/CO-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/CO-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/CO-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/CT-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/GA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/GA-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/MA-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/MD-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/ME-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/MN-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/NH-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/OR-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/OR-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/OR-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/TX-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/VA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/WA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; US/WI-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; double shell</td>
<td>NO-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>BE-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/AZ-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/CA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/CO-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/CO-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/CO-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/ID-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/MA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/MI-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/NC-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/NE-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/OR-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/OR-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; mass wall</td>
<td>US/NY-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; sunspace; vertical rockbed</td>
<td>US/MA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct gain; water wall</td>
<td>US/MT-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>double shell; direct gain; sunspace</td>
<td>NO-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>double shell; sunspace</td>
<td>NO-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>double shell; sunspace</td>
<td>NO-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hybrid; direct gain</td>
<td>CH-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hybrid; direct gain</td>
<td>CH-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hybrid; direct gain; convective air heater</td>
<td>CH-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall</td>
<td>US/NJ-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall</td>
<td>US/OR-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall</td>
<td>US/VA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall</td>
<td>US/WA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall</td>
<td>US/WI-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive Heating System Type</td>
<td>Site Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall (water); direct gain</td>
<td>US/VA-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall (water); direct gain</td>
<td>US/VA-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; "Clear View" solar collector</td>
<td>US/AZ-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; convective air heater; direct gain</td>
<td>US/AZ-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/CA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/CA-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/CA-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/CO-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/CO-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/GA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/IA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/MA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/MD-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/MN-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/MN-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/NC-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/NM-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain</td>
<td>US/VA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>BE-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/AZ-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/CA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/CO-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/CO-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/CO-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/ID-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/MA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/MI-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/NB-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/NC-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/OR-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/OR-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; direct gain; sunspace</td>
<td>US/WY-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; sunspace</td>
<td>US/AZ-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; sunspace</td>
<td>US/OH-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; sunspace</td>
<td>US/OR-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass wall; sunspace</td>
<td>US/SC-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>roof pond; direct gain</td>
<td>US/TX-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>CH-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/AZ-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/CO-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/MA-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/MT-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/MT-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/OR-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/OR-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/R1-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/WA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/WA-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/WA-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/WA-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/WA-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASSIVE HEATING SYSTEM TYPE</td>
<td>SITE CODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace</td>
<td>US/WA-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>BE-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>BE-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>CD-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>CH-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>CH-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>CH-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>CH-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>CH-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>NO-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>SW-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>SW-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>SW-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>SW-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/AZ-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/CA-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/CA-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/CO-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/CO-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/CO-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/CO-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/CO-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/CT-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/GA-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/GA-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/MA-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/MD-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/ME-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/MN-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/NH-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/NM-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/OR-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/OR-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/OR-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/RI-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/TX-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/VA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/WA-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; direct gain</td>
<td>US/WI-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; double shell</td>
<td>NO-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; double shell</td>
<td>NO-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; double shell; direct gain</td>
<td>NO-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall</td>
<td>US/AZ-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall</td>
<td>US/OH-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall</td>
<td>US/OR-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall</td>
<td>US/SC-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>BE-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/ID-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/MA-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/MI-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/WY-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SITES BY PASSIVE HEATING SYSTEM TYPE (CONT'D)

<table>
<thead>
<tr>
<th>PASSIVE HEATING SYSTEM TYPE</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/AZ-07</td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/CA-03</td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/CO-07</td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/CO-13</td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/NE-01</td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/OR-13</td>
</tr>
<tr>
<td>sunspace; mass wall; direct gain</td>
<td>US/OR-16</td>
</tr>
<tr>
<td>sunspace; vertical rockbed; direct gain</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>sunspace; vertical wall collector</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>sunspace; water wall</td>
<td>US/OR-14</td>
</tr>
<tr>
<td>vertical rockbed; direct gain; sunspace</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>vertical wall collector; sunspace</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>water wall</td>
<td>US/TN-01</td>
</tr>
<tr>
<td>water wall; direct gain</td>
<td>US/MT-02</td>
</tr>
<tr>
<td>water wall; sunspace</td>
<td>US/OR-14</td>
</tr>
<tr>
<td>Passive Cooling System Type</td>
<td>Site Code</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>earth contact</td>
<td>NO-01</td>
</tr>
<tr>
<td>earth contact</td>
<td>US/MT-03</td>
</tr>
<tr>
<td>earth contact; evaporative; ventilation</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>earth contact; radiation; evaporative; ventilation</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>earth contact; shading</td>
<td>US/MA-04</td>
</tr>
<tr>
<td>earth contact; shading; ventilation</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>earth contact; shading; ventilation</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>earth contact; ventilation</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>earth contact; ventilation</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>earth contact; ventilation</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>earth contact; ventilation</td>
<td>US/CA-02</td>
</tr>
<tr>
<td>earth contact; ventilation</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>earth contact; ventilation</td>
<td>US/NH-01</td>
</tr>
<tr>
<td>earth contact; ventilation</td>
<td>US/RJ-01</td>
</tr>
<tr>
<td>earth cooling tube</td>
<td>US/ID-01</td>
</tr>
<tr>
<td>evaporative</td>
<td>US/AZ-03</td>
</tr>
<tr>
<td>evaporative</td>
<td>US/AZ-05</td>
</tr>
<tr>
<td>evaporative</td>
<td>US/AZ-12</td>
</tr>
<tr>
<td>evaporative</td>
<td>US/VT-01</td>
</tr>
<tr>
<td>evaporative; ventilation</td>
<td>US/AZ-09</td>
</tr>
<tr>
<td>evaporative; ventilation; earth contact</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>evaporative; ventilation; earth contact; radiation</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>evaporative; ventilation; shading</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>radiation; evaporative; ventilation; earth contact</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>regenerative rock bed</td>
<td>US/VA-03</td>
</tr>
<tr>
<td>shading</td>
<td>US/CA-16</td>
</tr>
<tr>
<td>shading</td>
<td>US/CT-01</td>
</tr>
<tr>
<td>shading</td>
<td>US/IL-01</td>
</tr>
<tr>
<td>shading</td>
<td>US/KS-02</td>
</tr>
<tr>
<td>shading</td>
<td>US/MA-06</td>
</tr>
<tr>
<td>shading</td>
<td>US/MN-02</td>
</tr>
<tr>
<td>shading</td>
<td>US/MN-03</td>
</tr>
<tr>
<td>shading</td>
<td>US/MN-05</td>
</tr>
<tr>
<td>shading</td>
<td>US/OK-01</td>
</tr>
<tr>
<td>shading</td>
<td>US/OR-08</td>
</tr>
<tr>
<td>shading; earth contact</td>
<td>US/MA-04</td>
</tr>
<tr>
<td>shading; evaporative; ventilation</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/CA-02</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/CA-15</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/CO-05</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/CO-06</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/CO-15</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/MD-10</td>
</tr>
<tr>
<td>shading; ventilation</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>shading; ventilation; earth contact</td>
<td>US/CO-01</td>
</tr>
</tbody>
</table>
LIST OF SITES BY PASSIVE COOLING SYSTEM TYPE (CONT'D)

<table>
<thead>
<tr>
<th>PASSIVE COOLING SYSTEM TYPE</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>shading; ventilation; earth contact</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>sky radiation; ventilation</td>
<td>US/TX-02</td>
</tr>
<tr>
<td>thermal chimney; ventilation</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>ventilation; earth contact</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>ventilation; earth contact</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>ventilation; earth contact</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>ventilation; earth contact</td>
<td>US/GA-02</td>
</tr>
<tr>
<td>ventilation; earth contact</td>
<td>US/NH-01</td>
</tr>
<tr>
<td>ventilation; earth contact</td>
<td>US/RI-01</td>
</tr>
<tr>
<td>ventilation; earth contact; evaporative</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>ventilation; earth contact; radiation; evaporative</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>ventilation; earth contact; shading</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>ventilation; earth contact; shading</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>ventilation; evaporative</td>
<td>US/AZ-09</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/CA-02</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/CA-15</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/CO-05</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/CO-06</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/CO-15</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>ventilation; shading</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>ventilation; shading; evaporative</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>ventilation; sky radiation</td>
<td>US/TX-02</td>
</tr>
<tr>
<td>ventilation; thermal chimney</td>
<td>US/CA-07</td>
</tr>
</tbody>
</table>

Note: All other buildings use ventilation only as primary cooling system
<table>
<thead>
<tr>
<th>OTHER PASSIVE COMPONENTS</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>atrium roof vent</td>
<td>US/CA-06</td>
</tr>
<tr>
<td>exterior greenhouse shades</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>exterior shades; movable insulation</td>
<td>US/GA-01</td>
</tr>
<tr>
<td>insulating/reflective exterior panels</td>
<td>US/CO-07</td>
</tr>
<tr>
<td>movable insulation</td>
<td>CH-08</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/AZ-07</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CA-04</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CO-03</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CO-06</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CO-11</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CO-13</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CO-15</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/CT-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/GA-03</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/GA-04</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/KS-02</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MA-04</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MA-05</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MD-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MD-10</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/ME-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MN-02</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MN-03</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MN-04</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MT-02</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/MT-03</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/ND-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/NY-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/OH-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/OK-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/OR-08</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/SC-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/TN-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/VA-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/VA-05</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/WA-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/WI-01</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/WI-02</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/WI-03</td>
</tr>
<tr>
<td>movable insulation</td>
<td>US/WI-04</td>
</tr>
</tbody>
</table>

35
<table>
<thead>
<tr>
<th>OTHER PASSIVE COMPONENTS</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>movable insulation</td>
<td>US/WI-05</td>
</tr>
<tr>
<td>movable insulation; exterior shades</td>
<td>US/GA-01</td>
</tr>
<tr>
<td>movable insulation; reflective shades</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>movable insulation; reflectors</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>movable insulation; reflectors</td>
<td>US/CA-02</td>
</tr>
<tr>
<td>movable insulation; reflectors</td>
<td>US/CA-08</td>
</tr>
<tr>
<td>movable insulation; thermal chimney</td>
<td>US/GA-02</td>
</tr>
<tr>
<td>reflective louvre blinds</td>
<td>US/MD-11</td>
</tr>
<tr>
<td>reflective shades; movable insulation</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>reflectors; movable insulation</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>reflectors; movable insulation</td>
<td>US/CA-02</td>
</tr>
<tr>
<td>reflectors; movable insulation</td>
<td>US/CA-08</td>
</tr>
<tr>
<td>shading devices in sunspace</td>
<td>SW-07</td>
</tr>
<tr>
<td>thermal chimney; movable insulation</td>
<td>US/GA-02</td>
</tr>
<tr>
<td>wing walls for natural ventilation</td>
<td>US/FL-01</td>
</tr>
</tbody>
</table>
LIST OF SITES BY THERMAL STORAGE MATERIALS

<table>
<thead>
<tr>
<th>THERMAL STORAGE MATERIALS</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>adobe wall; concrete slab</td>
<td>US/CA-12</td>
</tr>
<tr>
<td>adobe wall; concrete slab</td>
<td>US/CA-17</td>
</tr>
<tr>
<td>adobe walls; brick floor</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>adobe walls; rock bed</td>
<td>US/NM-01</td>
</tr>
<tr>
<td>asbestos cement</td>
<td>CH-03</td>
</tr>
<tr>
<td>brick</td>
<td>DK-03</td>
</tr>
<tr>
<td>brick wall</td>
<td>SW-03</td>
</tr>
<tr>
<td>brick walls</td>
<td>DK-02</td>
</tr>
<tr>
<td>brick & concrete wall; tile & concrete floor</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>brick & tile floor; concrete walls; rock bed</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>brick chimney; concrete slab</td>
<td>US/MA-06</td>
</tr>
<tr>
<td>brick chimney; concrete slab</td>
<td>US/AZ-07</td>
</tr>
<tr>
<td>brick chimney; concrete slab; tile</td>
<td>US/MA-07</td>
</tr>
<tr>
<td>brick faced concrete wall; concrete slab</td>
<td>US/CT-01</td>
</tr>
<tr>
<td>brick fireplace; phase change rods; concrete floor</td>
<td>US/GA-01</td>
</tr>
<tr>
<td>brick floor & walls; concrete</td>
<td>US/CO-05</td>
</tr>
<tr>
<td>brick floor; adobe wall</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>brick floor; concrete block walls; water tubes</td>
<td>US/NH-01</td>
</tr>
<tr>
<td>brick floor; concrete wall; rock bed</td>
<td>US/NB-01</td>
</tr>
<tr>
<td>brick on wall & floor; concrete wall</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>brick over concrete floor slab</td>
<td>US/GA-03</td>
</tr>
<tr>
<td>brick veneer & concrete wall; tiled concrete floor</td>
<td>US/CO-07</td>
</tr>
<tr>
<td>brick veneer wall; concrete wall; concrete slab</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>brick veneer walls; rock bin</td>
<td>US/CO-06</td>
</tr>
<tr>
<td>brick wall; concrete slab</td>
<td>US/TX-03</td>
</tr>
<tr>
<td>brick wall; concrete slab</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>brick wall; concrete slab; tile</td>
<td>US/WY-01</td>
</tr>
<tr>
<td>brick walls; tiled concrete slab</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>brick walls; concrete floor</td>
<td>US/CO-03</td>
</tr>
<tr>
<td>brick; concrete block; concrete slab</td>
<td>US/WI-01</td>
</tr>
<tr>
<td>bricks on floor</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>clay block and plaster interior walls; concrete floor; rockbed</td>
<td>CH-07</td>
</tr>
<tr>
<td>clay block and plaster interior walls; concrete floor</td>
<td>CH-08</td>
</tr>
<tr>
<td>clay block and plaster interior walls; concrete floor; rockbed</td>
<td>CH-09</td>
</tr>
<tr>
<td>clay block and plaster interior walls; concrete floor</td>
<td>CH-10</td>
</tr>
<tr>
<td>concrete</td>
<td>US/WI-04</td>
</tr>
<tr>
<td>concrete</td>
<td>CH-05</td>
</tr>
<tr>
<td>concrete</td>
<td>CH-06</td>
</tr>
<tr>
<td>concrete</td>
<td>NO-08</td>
</tr>
<tr>
<td>concrete</td>
<td>US/MN-04</td>
</tr>
<tr>
<td>concrete block</td>
<td>US/AZ-12</td>
</tr>
<tr>
<td>concrete block</td>
<td>US/VA-02</td>
</tr>
<tr>
<td>concrete block mass wall; concrete slab</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>concrete block wall; tile on concrete slab</td>
<td>US/CA-13</td>
</tr>
<tr>
<td>concrete block walls</td>
<td>US/CA-03</td>
</tr>
<tr>
<td>concrete block walls; concrete slab</td>
<td>US/IA-02</td>
</tr>
<tr>
<td>concrete block walls; concrete slab</td>
<td>US/MO-07</td>
</tr>
<tr>
<td>concrete block walls; concrete slab</td>
<td>US/MA-04</td>
</tr>
<tr>
<td>concrete block walls; concrete slab</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>concrete block walls; concrete slab</td>
<td>US/MO-05</td>
</tr>
<tr>
<td>concrete block walls; concrete slab</td>
<td>US/MO-08</td>
</tr>
<tr>
<td>THERMAL STORAGE MATERIALS</td>
<td>SITE CODE</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>concrete block walls; concrete slab</td>
<td>US/MD-04</td>
</tr>
<tr>
<td>concrete block walls; concrete slab</td>
<td>US/NC-03</td>
</tr>
<tr>
<td>concrete block walls; water tubes; brick floor</td>
<td>US/NH-01</td>
</tr>
<tr>
<td>concrete block; concrete slab; brick</td>
<td>US/SC-01</td>
</tr>
<tr>
<td>concrete floor (hollow)</td>
<td>NO-02</td>
</tr>
<tr>
<td>concrete floor; brick fireplace; phase change rods</td>
<td>US/GA-01</td>
</tr>
<tr>
<td>concrete floor; brick walls</td>
<td>US/WI-01</td>
</tr>
<tr>
<td>concrete floor; clay block and plaster interior walls</td>
<td>CH-08</td>
</tr>
<tr>
<td>concrete floor; clay block and plaster interior walls; rockbed</td>
<td>CH-10</td>
</tr>
<tr>
<td>concrete floor; clay block and plaster interior walls; rockbed</td>
<td>CH-07</td>
</tr>
<tr>
<td>concrete floor; concrete walls</td>
<td>US/WI-01</td>
</tr>
<tr>
<td>concrete floor; stone fireplace</td>
<td>US/KS-02</td>
</tr>
<tr>
<td>concrete interior walls; concrete slab</td>
<td>SW-06</td>
</tr>
<tr>
<td>concrete masonry</td>
<td>US/VA-01</td>
</tr>
<tr>
<td>concrete masonry floor</td>
<td>US/WI-03</td>
</tr>
<tr>
<td>concrete mass wall - 5.5 m², 300 mm thick</td>
<td>US/AZ-04</td>
</tr>
<tr>
<td>concrete mass wall; phase-change rods</td>
<td>US/NJ-01</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/OR-13</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/IA-01</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/AZ-09</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/MD-06</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/OR-09</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/MD-03</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/NC-02</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/MD-02</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/OR-12</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/OR-10</td>
</tr>
<tr>
<td>concrete slab</td>
<td>CH-04</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/CA-11</td>
</tr>
<tr>
<td>concrete slab</td>
<td>SW-01</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/CA-04</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/CA-16</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/CA-15</td>
</tr>
<tr>
<td>concrete slab</td>
<td>US/OR-01</td>
</tr>
<tr>
<td>concrete slab</td>
<td>SW-04</td>
</tr>
<tr>
<td>concrete slab & walls; rock bed</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>concrete slab and wall</td>
<td>SW-06</td>
</tr>
<tr>
<td>concrete slab; adobe wall</td>
<td>US/CA-17</td>
</tr>
<tr>
<td>concrete slab; adobe wall</td>
<td>US/CA-12</td>
</tr>
<tr>
<td>concrete slab; brick chimney</td>
<td>US/MA-06</td>
</tr>
<tr>
<td>concrete slab; brick chimney</td>
<td>US/AZ-07</td>
</tr>
<tr>
<td>concrete slab; brick veneer wall; concrete wall</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>concrete slab; brick wall</td>
<td>US/TX-03</td>
</tr>
<tr>
<td>concrete slab; brick wall</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>concrete slab; brick-faced concrete wall</td>
<td>US/CT-01</td>
</tr>
<tr>
<td>concrete slab; brick; concrete block</td>
<td>US/SC-01</td>
</tr>
<tr>
<td>concrete slab; concrete block mass wall</td>
<td>US/CA-13</td>
</tr>
<tr>
<td>concrete slab; concrete block walls</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>concrete slab; concrete block walls</td>
<td>US/MD-04</td>
</tr>
<tr>
<td>concrete slab; concrete block walls</td>
<td>US/NC-03</td>
</tr>
<tr>
<td>concrete slab; concrete block walls</td>
<td>US/MD-08</td>
</tr>
</tbody>
</table>
LIST OF SITES BY THERMAL STORAGE MATERIALS (CONT'D)

<table>
<thead>
<tr>
<th>THERMAL STORAGE MATERIALS</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>concrete slab; concrete block walls</td>
<td>US/MD-07</td>
</tr>
<tr>
<td>concrete slab; concrete block walls</td>
<td>US/MD-05</td>
</tr>
<tr>
<td>concrete slab; concrete block walls</td>
<td>US/MA-04</td>
</tr>
<tr>
<td>concrete slab; concrete interior walls</td>
<td>SW-05</td>
</tr>
<tr>
<td>concrete slab; concrete wall</td>
<td>US/MT-03</td>
</tr>
<tr>
<td>concrete slab; concrete wall</td>
<td>US/NY-01</td>
</tr>
<tr>
<td>concrete slab; concrete wall</td>
<td>US/MA-05</td>
</tr>
<tr>
<td>concrete slab; concrete wall</td>
<td>US/MA-01</td>
</tr>
<tr>
<td>concrete slab; concrete wall</td>
<td>US/MA-03</td>
</tr>
<tr>
<td>concrete slab; concrete walls</td>
<td>US/CA-08</td>
</tr>
<tr>
<td>concrete slab; interior brick walls</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>concrete slab; masonry walls</td>
<td>BE-03</td>
</tr>
<tr>
<td>concrete slab; rock bed</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>concrete slab; rock bed; water tubes</td>
<td>US/CA-06</td>
</tr>
<tr>
<td>concrete slab; rock storage wall</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>concrete slab; sand</td>
<td>US/NY-02</td>
</tr>
<tr>
<td>concrete slab; sand</td>
<td>US/RI-01</td>
</tr>
<tr>
<td>concrete slab; tile</td>
<td>US/OR-15</td>
</tr>
<tr>
<td>concrete slab; tile; brick chimney</td>
<td>US/MA-07</td>
</tr>
<tr>
<td>concrete slab; tile; brick wall</td>
<td>US/WY-01</td>
</tr>
<tr>
<td>concrete slab; tile; mass wall</td>
<td>US/OR-16</td>
</tr>
<tr>
<td>concrete slab; tile; stone chimney</td>
<td>US/OK-01</td>
</tr>
<tr>
<td>concrete slab; water drums</td>
<td>US/CA-10</td>
</tr>
<tr>
<td>concrete slab; water drums</td>
<td>US/OR-08</td>
</tr>
<tr>
<td>concrete slab; water tanks</td>
<td>US/OR-17</td>
</tr>
<tr>
<td>concrete slab; water tubes</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>concrete slab; water tubes</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>concrete slab; water tubes</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>concrete slab; water tubes</td>
<td>US/CA-02</td>
</tr>
<tr>
<td>concrete slab; water wall</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>concrete slab; water wall</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>concrete wall with selective surface</td>
<td>US/CO-13</td>
</tr>
<tr>
<td>concrete wall; brick on wall and floor</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>concrete wall; concrete slab</td>
<td>US/MT-03</td>
</tr>
<tr>
<td>concrete wall; concrete slab</td>
<td>US/MA-03</td>
</tr>
<tr>
<td>concrete wall; concrete slab</td>
<td>US/NY-01</td>
</tr>
<tr>
<td>concrete wall; concrete slab</td>
<td>US/MA-01</td>
</tr>
<tr>
<td>concrete wall; concrete slab</td>
<td>US/MA-05</td>
</tr>
<tr>
<td>concrete wall; concrete slab; brick veneer wall</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>concrete wall; phase change rods</td>
<td>US/OH-01</td>
</tr>
<tr>
<td>concrete wall; rock bed; brick floor</td>
<td>US/NB-01</td>
</tr>
<tr>
<td>concrete walls & slab; rock bed; water tubes</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>concrete walls & slab; water drums</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>concrete walls; concrete floor</td>
<td>US/MI-01</td>
</tr>
<tr>
<td>concrete walls; concrete slab</td>
<td>US/CA-08</td>
</tr>
<tr>
<td>concrete walls; rockbed; brick and tile floor</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>concrete; brick floor & walls</td>
<td>US/CO-05</td>
</tr>
<tr>
<td>earth</td>
<td>NO-06</td>
</tr>
<tr>
<td>earth under crawl space</td>
<td>US/MT-01</td>
</tr>
<tr>
<td>interior brick walls; concrete slab</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/KS-01</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/TX-02</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/VT-03</td>
</tr>
</tbody>
</table>
LIST OF SITES BY THERMAL STORAGE MATERIALS (CONT'D)

<table>
<thead>
<tr>
<th>THERMAL STORAGE MATERIALS</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightweight building materials</td>
<td>US/WA-01</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/MO-01</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/MO-10</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/IL-01</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/VT-01</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/CA-09</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/OR-11</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/AZ-10</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/MO-09</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/R1-02</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/ME-01</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/VT-02</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/TX-01</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/AZ-11</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>NO-07</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/MN-02</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/MN-05</td>
</tr>
<tr>
<td>lightweight building materials</td>
<td>US/WI-02</td>
</tr>
<tr>
<td>masonry walls and floor</td>
<td>CH-02</td>
</tr>
<tr>
<td>masonry walls and floor</td>
<td>CH-01</td>
</tr>
<tr>
<td>masonry walls and floor</td>
<td>BE-02</td>
</tr>
<tr>
<td>masonry walls; concrete slab</td>
<td>CH-03</td>
</tr>
<tr>
<td>mass wall; concrete slab; tile</td>
<td>US/OR-16</td>
</tr>
<tr>
<td>phase change container wall</td>
<td>US/ND-01</td>
</tr>
<tr>
<td>phase change rods; concrete floor; brick fireplace</td>
<td>US/OG-01</td>
</tr>
<tr>
<td>phase change rods; concrete wall</td>
<td>US/MO-01</td>
</tr>
<tr>
<td>phase change storage tiles in ceiling</td>
<td>US/MO-11</td>
</tr>
<tr>
<td>phase-change rods; concrete mass wall</td>
<td>US/MJ-01</td>
</tr>
<tr>
<td>rock</td>
<td>NO-01</td>
</tr>
<tr>
<td>rock bed</td>
<td>US/AZ-05</td>
</tr>
<tr>
<td>rock bed</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>rock bed</td>
<td>US/VA-03</td>
</tr>
<tr>
<td>rock bed</td>
<td>US/WI-05</td>
</tr>
<tr>
<td>rock bed</td>
<td>SW-02</td>
</tr>
<tr>
<td>rock bed</td>
<td>NO-04</td>
</tr>
<tr>
<td>rock bed; adobe walls</td>
<td>US/NM-01</td>
</tr>
<tr>
<td>rock bed; brick floor; concrete wall</td>
<td>US/NB-01</td>
</tr>
<tr>
<td>rock bed; brick and tile floor; concrete walls</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>rock bed; water tubes; concrete walls and slab</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>rock bed; clay block and plaster interior walls</td>
<td>CH-07</td>
</tr>
<tr>
<td>rock bed; clay block and plaster interior walls;</td>
<td>CH-09</td>
</tr>
<tr>
<td>concrete floor</td>
<td></td>
</tr>
<tr>
<td>rock bed; concrete slab</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>rock bed; concrete slab and walls</td>
<td>US/NM-01</td>
</tr>
<tr>
<td>rock bed; rock wall</td>
<td>US/NM-02</td>
</tr>
<tr>
<td>rock bed; water containers</td>
<td>US/AZ-03</td>
</tr>
<tr>
<td>rock bed; water tubes; concrete slab</td>
<td>US/CA-06</td>
</tr>
<tr>
<td>rock bin; brick veneer walls</td>
<td>US/CO-06</td>
</tr>
<tr>
<td>rock storage wall; concrete slab</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>rock wall; rock bed</td>
<td>US/NM-02</td>
</tr>
<tr>
<td>sand; concrete slab</td>
<td>US/RI-01</td>
</tr>
<tr>
<td>sand; concrete slab</td>
<td>US/NY-02</td>
</tr>
<tr>
<td>stone chimney; concrete slab; tile</td>
<td>US/OK-01</td>
</tr>
</tbody>
</table>
LIST OF SITES BY THERMAL STORAGE MATERIALS (CONT'D)

<table>
<thead>
<tr>
<th>THERMAL STORAGE MATERIALS</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>stone fireplace; concrete floor</td>
<td>US/KS-02</td>
</tr>
<tr>
<td>tile & concrete floor; brick and concrete wall</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>tile floor</td>
<td>US/CO-15</td>
</tr>
<tr>
<td>tile on concrete floor</td>
<td>US/ID-01</td>
</tr>
<tr>
<td>tile on concrete floor</td>
<td>US/GA-04</td>
</tr>
<tr>
<td>tile on concrete floor; water tubes</td>
<td>US/GA-02</td>
</tr>
<tr>
<td>tile on concrete slab; concrete block wall</td>
<td>US/CA-03</td>
</tr>
<tr>
<td>tile on lightweight concrete floor</td>
<td>DK-01</td>
</tr>
<tr>
<td>tile; brick chimney; concrete slab</td>
<td>US/MA-07</td>
</tr>
<tr>
<td>tile; brick wall; concrete slab</td>
<td>US/WY-01</td>
</tr>
<tr>
<td>tile; concrete slab</td>
<td>US/OR-15</td>
</tr>
<tr>
<td>tile; mass wall; concrete slab</td>
<td>US/OR-16</td>
</tr>
<tr>
<td>tile; stone chimney; concrete slab</td>
<td>US/OK-01</td>
</tr>
<tr>
<td>tiled concrete floor; brick veneer & concrete wall</td>
<td>US/CO-07</td>
</tr>
<tr>
<td>tiled concrete slab; brick wall</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>tiled concrete slab; brick wall</td>
<td>US/CO-03</td>
</tr>
<tr>
<td>water containers; rock bed</td>
<td>US/AZ-03</td>
</tr>
<tr>
<td>water drums</td>
<td>NO-05</td>
</tr>
<tr>
<td>water drums; concrete slab</td>
<td>US/CA-10</td>
</tr>
<tr>
<td>water drums; concrete slab</td>
<td>US/OR-08</td>
</tr>
<tr>
<td>water drums; concrete walls and slab</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>water tanks; concrete slab</td>
<td>US/OR-17</td>
</tr>
<tr>
<td>water tubes</td>
<td>US/TN-01</td>
</tr>
<tr>
<td>water tubes</td>
<td>US/MT-02</td>
</tr>
<tr>
<td>water tubes; brick floor; concrete block walls</td>
<td>US/NH-01</td>
</tr>
<tr>
<td>water tubes; concrete slab</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>water tubes; concrete slab</td>
<td>US/CA-02</td>
</tr>
<tr>
<td>water tubes; concrete slab</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>water tubes; concrete slab</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>water tubes; concrete slab; rock bed</td>
<td>US/CA-06</td>
</tr>
<tr>
<td>water tubes; concrete walls and slab; rock bed</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>water tubes; tile on concrete floor</td>
<td>US/GA-02</td>
</tr>
<tr>
<td>water wall</td>
<td>US/OR-14</td>
</tr>
<tr>
<td>water wall</td>
<td>US/VA-05</td>
</tr>
<tr>
<td>water wall</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>water wall</td>
<td>US/CA-05</td>
</tr>
</tbody>
</table>
List of Sites by Type of Construction

<table>
<thead>
<tr>
<th>Construction Type</th>
<th>Site Code</th>
<th>Construction Type</th>
<th>Site Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>adobe</td>
<td>US/AZ-01</td>
<td>wood frame</td>
<td>NO-02</td>
</tr>
<tr>
<td>adobe; wood frame</td>
<td>US/NM-01</td>
<td>wood frame</td>
<td>US/MN-03</td>
</tr>
<tr>
<td>asbestos-cement modules</td>
<td>CH-03</td>
<td>wood frame</td>
<td>NO-07</td>
</tr>
<tr>
<td>brick veneer; wood frame</td>
<td>US/TX-01</td>
<td>wood frame</td>
<td>US/MT-01</td>
</tr>
<tr>
<td>brick veneer; wood frame</td>
<td>US/TX-03</td>
<td>wood frame</td>
<td>US/MT-02</td>
</tr>
<tr>
<td>brick veneer; wood frame</td>
<td>US/GA-04</td>
<td>wood frame</td>
<td>SW-02</td>
</tr>
<tr>
<td>brick wall with cavity</td>
<td>DK-03</td>
<td>wood frame</td>
<td>SW-04</td>
</tr>
<tr>
<td>brick wall</td>
<td>CH-04</td>
<td>wood frame</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>concrete</td>
<td>DK-01</td>
<td>wood frame</td>
<td>US/AZ-03</td>
</tr>
<tr>
<td>concrete block</td>
<td>US/AZ-02</td>
<td>wood frame</td>
<td>US/NC-02</td>
</tr>
<tr>
<td>concrete block</td>
<td>US/AZ-11</td>
<td>wood frame</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>concrete block</td>
<td>US/AZ-12</td>
<td>wood frame</td>
<td>US/NC-03</td>
</tr>
<tr>
<td>concrete block; wood frame</td>
<td>US/CA-06</td>
<td>wood frame</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>concrete prefab</td>
<td>CH-06</td>
<td>wood frame</td>
<td>US/ND-01</td>
</tr>
<tr>
<td>concrete prefab</td>
<td>CH-05</td>
<td>wood frame</td>
<td>US/CA-03</td>
</tr>
<tr>
<td>concrete; wood frame</td>
<td>SW-06</td>
<td>wood frame</td>
<td>US/NE-01</td>
</tr>
<tr>
<td>concrete; wood frame</td>
<td>US/MT-03</td>
<td>wood frame</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>concrete; wood frame</td>
<td>US/NC-01</td>
<td>wood frame</td>
<td>US/NJ-01</td>
</tr>
<tr>
<td>concrete; wood frame</td>
<td>SW-05</td>
<td>wood frame</td>
<td>US/CA-12</td>
</tr>
<tr>
<td>log</td>
<td>US/AZ-10</td>
<td>wood frame</td>
<td>US/NM-02</td>
</tr>
<tr>
<td>log</td>
<td>US/MD-06</td>
<td>wood frame</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>masonry</td>
<td>DK-02</td>
<td>wood frame</td>
<td>US/NY-02</td>
</tr>
<tr>
<td>masonry</td>
<td>BE-01</td>
<td>wood frame</td>
<td>US/CA-16</td>
</tr>
<tr>
<td>masonry</td>
<td>US/MA-04</td>
<td>wood frame</td>
<td>US/ON-01</td>
</tr>
<tr>
<td>masonry</td>
<td>US/VA-01</td>
<td>wood frame</td>
<td>US/CO-02</td>
</tr>
<tr>
<td>masonry</td>
<td>BE-03</td>
<td>wood frame</td>
<td>US/OR-01</td>
</tr>
<tr>
<td>masonry</td>
<td>BE-02</td>
<td>wood frame</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>masonry</td>
<td>US/CA-08</td>
<td>wood frame</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>masonry</td>
<td>CH-01</td>
<td>wood frame</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>masonry</td>
<td>CH-02</td>
<td>wood frame</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>masonry</td>
<td>US/CO-01</td>
<td>wood frame</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>masonry</td>
<td>US/MD-04</td>
<td>wood frame</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>masonry</td>
<td>US/AZ-06</td>
<td>wood frame</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>masonry</td>
<td>US/MD-07</td>
<td>wood frame</td>
<td>US/OR-12</td>
</tr>
<tr>
<td>masonry</td>
<td>US/CA-11</td>
<td>wood frame</td>
<td>US/CO-14</td>
</tr>
<tr>
<td>masonry</td>
<td>US/CA-09</td>
<td>wood frame</td>
<td>US/OR-15</td>
</tr>
<tr>
<td>masonry</td>
<td>US/CO-05</td>
<td>wood frame</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>masonry; post & beam</td>
<td>US/NH-01</td>
<td>wood frame</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>masonry; wood frame</td>
<td>US/NY-01</td>
<td>wood frame</td>
<td>US/OR-16</td>
</tr>
<tr>
<td>masonry; wood frame</td>
<td>US/CO-17</td>
<td>wood frame</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>masonry; wood frame</td>
<td>NO-05</td>
<td>wood frame</td>
<td>US/RA-01</td>
</tr>
<tr>
<td>masonry; wood frame</td>
<td>NO-06</td>
<td>wood frame</td>
<td>US/RA-03</td>
</tr>
<tr>
<td>masonry; wood frame</td>
<td>CH-07</td>
<td>wood frame</td>
<td>US/RA-02</td>
</tr>
<tr>
<td>masonry; wood frame</td>
<td>CH-08</td>
<td>wood frame</td>
<td>US/IA-02</td>
</tr>
<tr>
<td>masonry; wood frame</td>
<td>CH-09</td>
<td>wood frame</td>
<td>US/SC-01</td>
</tr>
<tr>
<td>masonry; wood frame</td>
<td>CH-10</td>
<td>wood frame</td>
<td>US/ID-01</td>
</tr>
<tr>
<td>post & beam</td>
<td>US/FL-01</td>
<td>wood frame</td>
<td>US/KS-01</td>
</tr>
<tr>
<td>post & beam; masonry</td>
<td>US/NH-01</td>
<td>wood frame</td>
<td>US/TN-02</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CT-01</td>
<td>wood frame</td>
<td>US/MA-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/MN-02</td>
<td>wood frame</td>
<td>US/Va-02</td>
</tr>
<tr>
<td>CONSTRUCTION TYPE</td>
<td>SITE CODE</td>
<td>CONSTRUCTION TYPE</td>
<td>SITE CODE</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/MA-03</td>
<td>wood frame</td>
<td>US/MD-08</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/VA-03</td>
<td>wood frame</td>
<td>US/CO-11</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/MA-06</td>
<td>wood frame</td>
<td>US/ME-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/VA-04</td>
<td>wood frame</td>
<td>US/MD-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/MD-01</td>
<td>wood frame</td>
<td>US/MD-03</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/MD-09</td>
<td>wood frame</td>
<td>CD-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/VT-02</td>
<td>wood frame</td>
<td>US/IA-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/MD-11</td>
<td>wood frame</td>
<td>NO-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/VT-03</td>
<td>wood frame</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>wood frame</td>
<td>NO-03</td>
<td>wood frame</td>
<td>CD-02</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/WA-01</td>
<td>wood frame</td>
<td>US/MD-10</td>
</tr>
<tr>
<td>wood frame</td>
<td>SW-03</td>
<td>wood frame</td>
<td>US/VT-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/WI-01</td>
<td>wood frame</td>
<td>US/MD-02</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/AZ-07</td>
<td>wood frame</td>
<td>US/AZ-04</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/WI-02</td>
<td>wood frame</td>
<td>US/MA-07</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CA-02</td>
<td>wood frame</td>
<td>US/IL-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/WI-03</td>
<td>wood frame</td>
<td>SW-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CA-07</td>
<td>wood frame</td>
<td>US/AZ-05</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/WI-04</td>
<td>wood frame</td>
<td>US/OR-13</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CA-15</td>
<td>wood frame</td>
<td>US/CA-15</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/WI-05</td>
<td>wood frame</td>
<td>US/NM-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CO-03</td>
<td>wood frame</td>
<td>US/GA-04</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/WY-01</td>
<td>wood frame</td>
<td>US/TX-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CO-07</td>
<td>wood frame</td>
<td>US/TX-03</td>
</tr>
<tr>
<td>wood frame</td>
<td>SW-07</td>
<td>wood frame; concrete</td>
<td>SW-05</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/MD-01</td>
<td>wood frame; concrete</td>
<td>SW-06</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/AZ-09</td>
<td>wood frame; concrete</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CO-15</td>
<td>wood frame; concrete</td>
<td>US/MT-03</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CA-04</td>
<td>wood frame; concrete; block</td>
<td>US/CA-06</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/GA-02</td>
<td>wood frame; masonry</td>
<td>CH-07</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CA-13</td>
<td>wood frame; masonry</td>
<td>CH-08</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/IA-03</td>
<td>wood frame; masonry</td>
<td>CH-09</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CA-17</td>
<td>wood frame; masonry</td>
<td>CH-10</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/KS-02</td>
<td>wood frame; masonry</td>
<td>NO-05</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CO-05</td>
<td>wood frame; masonry</td>
<td>NO-06</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/MA-05</td>
<td>wood frame; masonry</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>wood frame</td>
<td>US/CO-09</td>
<td>wood frame; masonry</td>
<td>US/NY-01</td>
</tr>
<tr>
<td>FUEL</td>
<td>SITE CODE</td>
<td>FUEL</td>
<td>SITE CODE</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>electric</td>
<td>CD-01</td>
<td>electric</td>
<td>US/MD-05</td>
</tr>
<tr>
<td>electric</td>
<td>CD-02</td>
<td>electric</td>
<td>US/MD-06</td>
</tr>
<tr>
<td>electric</td>
<td>CH-01</td>
<td>electric</td>
<td>US/MD-07</td>
</tr>
<tr>
<td>electric</td>
<td>CH-02</td>
<td>electric</td>
<td>US/MD-08</td>
</tr>
<tr>
<td>electric</td>
<td>CH-05</td>
<td>electric</td>
<td>US/MD-09</td>
</tr>
<tr>
<td>electric</td>
<td>CH-06</td>
<td>electric</td>
<td>US/MD-10</td>
</tr>
<tr>
<td>electric</td>
<td>DK-01</td>
<td>electric</td>
<td>US/MD-11</td>
</tr>
<tr>
<td>electric</td>
<td>DK-03</td>
<td>electric</td>
<td>US/ME-01</td>
</tr>
<tr>
<td>electric</td>
<td>NO-02</td>
<td>electric</td>
<td>US/MN-05</td>
</tr>
<tr>
<td>electric</td>
<td>NO-03</td>
<td>electric</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>electric</td>
<td>NO-04</td>
<td>electric</td>
<td>US/NC-01</td>
</tr>
<tr>
<td>electric</td>
<td>NO-05</td>
<td>electric</td>
<td>US/NC-02</td>
</tr>
<tr>
<td>electric</td>
<td>NO-06</td>
<td>electric</td>
<td>US/NC-03</td>
</tr>
<tr>
<td>electric</td>
<td>NO-07</td>
<td>electric</td>
<td>US/NE-01</td>
</tr>
<tr>
<td>electric</td>
<td>NO-08</td>
<td>electric</td>
<td>US/NH-01</td>
</tr>
<tr>
<td>electric</td>
<td>SW-01</td>
<td>electric</td>
<td>US/NY-01</td>
</tr>
<tr>
<td>electric</td>
<td>SW-05</td>
<td>electric</td>
<td>US/NY-02</td>
</tr>
<tr>
<td>electric</td>
<td>SW-06</td>
<td>electric</td>
<td>US/OK-01</td>
</tr>
<tr>
<td>electric</td>
<td>SW-07</td>
<td>electric</td>
<td>US/OR-01</td>
</tr>
<tr>
<td>electric</td>
<td>US/AZ-08</td>
<td>electric</td>
<td>US/OR-03</td>
</tr>
<tr>
<td>electric</td>
<td>US/AZ-09</td>
<td>electric</td>
<td>US/OR-04</td>
</tr>
<tr>
<td>electric</td>
<td>US/AZ-10</td>
<td>electric</td>
<td>US/OR-05</td>
</tr>
<tr>
<td>electric</td>
<td>US/AZ-11</td>
<td>electric</td>
<td>US/OR-06</td>
</tr>
<tr>
<td>electric</td>
<td>US/AZ-12</td>
<td>electric</td>
<td>US/OR-07</td>
</tr>
<tr>
<td>electric</td>
<td>US/CA-03</td>
<td>electric</td>
<td>US/OR-08</td>
</tr>
<tr>
<td>electric</td>
<td>US/CA-06</td>
<td>electric</td>
<td>US/OR-09</td>
</tr>
<tr>
<td>electric</td>
<td>US/CA-15</td>
<td>electric</td>
<td>US/OR-10</td>
</tr>
<tr>
<td>electric</td>
<td>US/CA-17</td>
<td>electric</td>
<td>US/OR-11</td>
</tr>
<tr>
<td>electric</td>
<td>US/CO-02</td>
<td>electric</td>
<td>US/OR-12</td>
</tr>
<tr>
<td>electric</td>
<td>US/CO-13</td>
<td>electric</td>
<td>US/OR-13</td>
</tr>
<tr>
<td>electric</td>
<td>US/CO-14</td>
<td>electric</td>
<td>US/OR-14</td>
</tr>
<tr>
<td>electric</td>
<td>US/CO-15</td>
<td>electric</td>
<td>US/OR-15</td>
</tr>
<tr>
<td>electric</td>
<td>US/CO-16</td>
<td>electric</td>
<td>US/OR-16</td>
</tr>
<tr>
<td>electric</td>
<td>US/CO-17</td>
<td>electric</td>
<td>US/OR-17</td>
</tr>
<tr>
<td>electric</td>
<td>US/CT-01</td>
<td>electric</td>
<td>US/RI-01</td>
</tr>
<tr>
<td>electric</td>
<td>US/GA-01</td>
<td>electric</td>
<td>US/RI-02</td>
</tr>
<tr>
<td>electric</td>
<td>US/GA-02</td>
<td>electric</td>
<td>US/SC-01</td>
</tr>
<tr>
<td>electric</td>
<td>US/IA-01</td>
<td>electric</td>
<td>US/TX-03</td>
</tr>
<tr>
<td>electric</td>
<td>US/IA-02</td>
<td>electric</td>
<td>US/VA-01</td>
</tr>
<tr>
<td>electric</td>
<td>US/ID-01</td>
<td>electric</td>
<td>US/VA-02</td>
</tr>
<tr>
<td>electric</td>
<td>US/KS-01</td>
<td>electric</td>
<td>US/VA-03</td>
</tr>
<tr>
<td>electric</td>
<td>US/KS-02</td>
<td>electric</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>electric</td>
<td>US/MA-01</td>
<td>electric</td>
<td>US/VA-05</td>
</tr>
<tr>
<td>electric</td>
<td>US/MA-02</td>
<td>electric</td>
<td>US/VT-01</td>
</tr>
<tr>
<td>electric</td>
<td>US/MA-04</td>
<td>electric</td>
<td>US/VT-02</td>
</tr>
<tr>
<td>electric</td>
<td>US/MA-05</td>
<td>electric</td>
<td>US/VT-03</td>
</tr>
<tr>
<td>electric</td>
<td>US/MA-07</td>
<td>electric</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>electric</td>
<td>US/MD-01</td>
<td>electric</td>
<td>US/WA-04</td>
</tr>
<tr>
<td>electric</td>
<td>US/MD-02</td>
<td>electric</td>
<td>US/WA-06</td>
</tr>
<tr>
<td>electric</td>
<td>US/MD-03</td>
<td>electric</td>
<td>US/WY-01</td>
</tr>
<tr>
<td>electric</td>
<td>US/MD-04</td>
<td>electric; wood</td>
<td>US/GA-03</td>
</tr>
<tr>
<td>electric</td>
<td>US/MD-04</td>
<td>electric; propane</td>
<td>SW-02</td>
</tr>
<tr>
<td>FUEL</td>
<td>SITE CODE</td>
<td>FUEL</td>
<td>SITE CODE</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/AZ-06</td>
<td>gas; wood</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/CA-04</td>
<td>gas; wood</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/CA-10</td>
<td>gas; wood</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/CA-11</td>
<td>gas; wood</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/CA-12</td>
<td>gas; wood</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/MI-01</td>
<td>gas; wood</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/MN-01</td>
<td>oil</td>
<td>CH-03</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/MT-01</td>
<td>oil</td>
<td>CH-04</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/MT-03</td>
<td>oil</td>
<td>DK-02</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/ND-01</td>
<td>propane</td>
<td>US/AZ-07</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/NM-01</td>
<td>propane</td>
<td>US/CA-09</td>
</tr>
<tr>
<td>electric; wood</td>
<td>US/OH-01</td>
<td>propane</td>
<td>US/MA-03</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-02</td>
<td>propane</td>
<td>US/NI-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-07</td>
<td>propane</td>
<td>US/NI-02</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-13</td>
<td>propane; electric</td>
<td>US/BA-03</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-14</td>
<td>propane; wood</td>
<td>US/NJ-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-16</td>
<td>wood</td>
<td>BE-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-03</td>
<td>wood</td>
<td>CH-07</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-05</td>
<td>wood</td>
<td>CH-08</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-06</td>
<td>wood</td>
<td>CH-09</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-07</td>
<td>wood</td>
<td>CH-10</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-08</td>
<td>wood</td>
<td>SW-03</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-09</td>
<td>wood</td>
<td>US/CA-08</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-11</td>
<td>wood</td>
<td>US/MT-02</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-12</td>
<td>wood; electric</td>
<td>SW-02</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-12</td>
<td>wood; electric</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-04</td>
<td>wood; electric</td>
<td>US/CA-04</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-10</td>
<td>wood; electric</td>
<td>US/CA-10</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-11</td>
<td>wood; electric</td>
<td>US/CA-11</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-12</td>
<td>wood; electric</td>
<td>US/CA-12</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-01</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-02</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-03</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-04</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-05</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-06</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-07</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-08</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-09</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-10</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-11</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-12</td>
<td>wood; electric</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-01</td>
<td>wood; gas</td>
<td>BE-03</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-05</td>
<td>wood; gas</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-06</td>
<td>wood; gas</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>gas</td>
<td>US/CA-09</td>
<td>wood; gas</td>
<td>US/CO-01</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-01</td>
<td>wood; gas</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>gas</td>
<td>US/CO-10</td>
<td>wood; gas</td>
<td>US/CO-10</td>
</tr>
<tr>
<td>gas</td>
<td>US/IA-03</td>
<td>wood; gas</td>
<td>US/IA-03</td>
</tr>
<tr>
<td>gas</td>
<td>US/NJ-01</td>
<td>wood; propane</td>
<td>US/NJ-01</td>
</tr>
<tr>
<td>AUXILIARY SYSTEM TYPE</td>
<td>SITE CODE</td>
<td>AUXILIARY SYSTEM TYPE</td>
<td>SITE CODE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>baseboard</td>
<td>CD-01</td>
<td>forced air - furnace</td>
<td>US/CO-07</td>
</tr>
<tr>
<td>baseboard</td>
<td>NO-02</td>
<td>forced air - furnace</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>baseboard</td>
<td>SW-01</td>
<td>forced air - furnace</td>
<td>US/CO-09</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/AZ-08</td>
<td>forced air - furnace</td>
<td>US/CO-11</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/AZ-09</td>
<td>forced air - furnace</td>
<td>US/CO-12</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/CA-03</td>
<td>forced air - furnace</td>
<td>US/CO-15</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/CO-02</td>
<td>forced air - furnace</td>
<td>US/CO-16</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/CO-13</td>
<td>forced air - furnace</td>
<td>US/CO-04</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/CO-17</td>
<td>forced air - furnace</td>
<td>US/IA-01</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/CT-01</td>
<td>forced air - furnace</td>
<td>US/IA-02</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/MA-05</td>
<td>forced air - furnace</td>
<td>US/IL-01</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/NC-01</td>
<td>forced air - furnace</td>
<td>US/MD-02</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/NC-03</td>
<td>forced air - furnace</td>
<td>US/MD-03</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/NH-01</td>
<td>forced air - furnace</td>
<td>US/MD-04</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/NY-01</td>
<td>forced air - furnace</td>
<td>US/MD-05</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/RI-02</td>
<td>forced air - furnace</td>
<td>US/MD-06</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/VA-04</td>
<td>forced air - furnace</td>
<td>US/MD-07</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/VA-05</td>
<td>forced air - furnace</td>
<td>US/MD-09</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/VT-01</td>
<td>forced air - furnace</td>
<td>US/MD-10</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/VT-02</td>
<td>forced air - furnace</td>
<td>US/MD-11</td>
</tr>
<tr>
<td>baseboard</td>
<td>US/VT-03</td>
<td>forced air - furnace</td>
<td>US/MN-02</td>
</tr>
<tr>
<td>baseboard; stove</td>
<td>US/CA-10</td>
<td>forced air - furnace</td>
<td>US/MN-03</td>
</tr>
<tr>
<td>baseboard; stove</td>
<td>US/CA-12</td>
<td>forced air - furnace</td>
<td>US/MT-02</td>
</tr>
<tr>
<td>baseboard; stove</td>
<td>US/MN-01</td>
<td>forced air - furnace</td>
<td>US/NC-02</td>
</tr>
<tr>
<td>baseboard; stove</td>
<td>US/MN-01</td>
<td>forced air - furnace</td>
<td>US/NM-02</td>
</tr>
<tr>
<td>baseboard; stove</td>
<td>US/ND-01</td>
<td>forced air - furnace</td>
<td>US/NY-02</td>
</tr>
<tr>
<td>baseboard; stove</td>
<td>US/OK-01</td>
<td>forced air - furnace</td>
<td>US/OR-01</td>
</tr>
<tr>
<td>baseboard; stove; fireplace</td>
<td>US/OR-07</td>
<td>forced air - furnace</td>
<td>US/OR-02</td>
</tr>
<tr>
<td>baseboards; heat pump; stove</td>
<td>US/OR-07</td>
<td>forced air - furnace</td>
<td>US/OR-05</td>
</tr>
<tr>
<td>evaporative cooler</td>
<td>US/AZ-11</td>
<td>forced air - furnace</td>
<td>US/OR-06</td>
</tr>
<tr>
<td>evaporative cooler</td>
<td>US/AZ-12</td>
<td>forced air - furnace</td>
<td>US/OR-08</td>
</tr>
<tr>
<td>fireplace; baseboard; stove</td>
<td>US/IA-03</td>
<td>forced air - furnace</td>
<td>US/OR-14</td>
</tr>
<tr>
<td>fireplace; heat pump</td>
<td>US/MI-01</td>
<td>forced air - furnace</td>
<td>US/OR-15</td>
</tr>
<tr>
<td>fireplace; hydronic</td>
<td>US/CA-08</td>
<td>forced air - furnace</td>
<td>US/OR-16</td>
</tr>
<tr>
<td>fireplace; hydronic</td>
<td>US/CO-01</td>
<td>forced air - furnace</td>
<td>US/SC-01</td>
</tr>
<tr>
<td>floor heaters</td>
<td>US/OR-04</td>
<td>forced air - furnace</td>
<td>US/TX-01</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>CD-02</td>
<td>forced air - furnace</td>
<td>US/VA-01</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/AZ-07</td>
<td>forced air - furnace</td>
<td>US/VA-02</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CA-02</td>
<td>forced air - furnace</td>
<td>US/VA-03</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CA-09</td>
<td>forced air - furnace</td>
<td>US/VA-04</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CA-13</td>
<td>forced air - furnace</td>
<td>US/VA-05</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CA-16</td>
<td>forced air - furnace</td>
<td>US/VA-06</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CO-03</td>
<td>forced air - furnace</td>
<td>US/VA-07</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CO-04</td>
<td>forced air - furnace</td>
<td>US/VA-08</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CO-05</td>
<td>forced air - furnace</td>
<td>US/VA-09</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CO-06</td>
<td>forced air - furnace</td>
<td>US/WI-01</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CO-07</td>
<td>forced air - furnace</td>
<td>US/WI-02</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CO-08</td>
<td>forced air - furnace</td>
<td>US/WI-03</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/CO-09</td>
<td>forced air - furnace</td>
<td>US/WI-04</td>
</tr>
</tbody>
</table>

46
<table>
<thead>
<tr>
<th>AUXILIARY SYSTEM TYPE</th>
<th>SITE CODE</th>
<th>AUXILIARY SYSTEM TYPE</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>forced air - furnace</td>
<td>US/WI-05</td>
<td>radiant ceiling; stove</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>forced air - furnace</td>
<td>US/WY-01</td>
<td>radiant ceiling; stove</td>
<td>US/CA-11</td>
</tr>
<tr>
<td>forced air - furnace; fireplace</td>
<td>US/IA-03</td>
<td>radiant heaters</td>
<td>US/CO-14</td>
</tr>
<tr>
<td>forced air - furnace; stove</td>
<td>BE-01</td>
<td>resistance</td>
<td>US/RI-01</td>
</tr>
<tr>
<td>forced air - furnace; stove</td>
<td>SW-02</td>
<td>resistance heater</td>
<td>CH-05</td>
</tr>
<tr>
<td>forced air - furnace; stove</td>
<td>US/C0-10</td>
<td>resistance heater</td>
<td>CH-06</td>
</tr>
<tr>
<td>forced air - furnace; stove</td>
<td>US/NJ-01</td>
<td>resistance heater</td>
<td>NO-03</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/AZ-10</td>
<td>resistance heater</td>
<td>NO-04</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/CA-06</td>
<td>resistance heater</td>
<td>NO-05</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/CA-15</td>
<td>resistance heater</td>
<td>NO-06</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/GA-01</td>
<td>resistance heater</td>
<td>NO-07</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/MA-04</td>
<td>resistance heater</td>
<td>US/CA-17</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/MA-07</td>
<td>resistance heater</td>
<td>US/MD-08</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/MD-01</td>
<td>resistance heater</td>
<td>US/GA-02</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/NC-01</td>
<td>stove</td>
<td>CH-07</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/TX-03</td>
<td>stove</td>
<td>CH-08</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/VA-02</td>
<td>stove</td>
<td>CH-09</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/VA-03</td>
<td>stove</td>
<td>CH-10</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/VA-04</td>
<td>stove; baseboard</td>
<td>US/CA-10</td>
</tr>
<tr>
<td>heat pump</td>
<td>US/NE-01</td>
<td>stove; baseboard</td>
<td>US/CA-12</td>
</tr>
<tr>
<td>heat pump; fireplace</td>
<td>US/MI-01</td>
<td>stove; baseboard</td>
<td>US/MN-01</td>
</tr>
<tr>
<td>heat pump; hydronic</td>
<td>CH-01</td>
<td>stove; baseboard</td>
<td>US/MT-01</td>
</tr>
<tr>
<td>heat pump; hydronic</td>
<td>SW-07</td>
<td>stove; baseboard</td>
<td>US/ND-01</td>
</tr>
<tr>
<td>heat pump; resistance furnace</td>
<td>US/KS-01</td>
<td>stove; baseboard</td>
<td>US/NM-01</td>
</tr>
<tr>
<td>heat pump; resistance furnace</td>
<td>US/KS-02</td>
<td>stove; baseboard</td>
<td>US/OH-01</td>
</tr>
<tr>
<td>heat pump; stove</td>
<td>US/CA-04</td>
<td>stove; heat pump</td>
<td>US/VA-01</td>
</tr>
<tr>
<td>heat pump; stove</td>
<td>US/MT-03</td>
<td>stove; forced air-furnace</td>
<td>BE-01</td>
</tr>
<tr>
<td>heat pump; stove; baseboard</td>
<td>US/VA-01</td>
<td>stove; forced air-furnace</td>
<td>SW-02</td>
</tr>
<tr>
<td>hydronic</td>
<td>BE-02</td>
<td>stove; forced air-furnace</td>
<td>US/CA-10</td>
</tr>
<tr>
<td>hydronic</td>
<td>CH-02</td>
<td>stove; forced air-furnace</td>
<td>US/CA-04</td>
</tr>
<tr>
<td>hydronic</td>
<td>CH-03</td>
<td>stove; heat pump</td>
<td>US/CA-04</td>
</tr>
<tr>
<td>hydronic</td>
<td>CH-04</td>
<td>stove; heat pump</td>
<td>US/MT-03</td>
</tr>
<tr>
<td>hydronic</td>
<td>SW-06</td>
<td>stove; hydronic</td>
<td>BE-03</td>
</tr>
<tr>
<td>hydronic</td>
<td>US/MA-03</td>
<td>stove; radiant ceiling</td>
<td>US/AZ-06</td>
</tr>
<tr>
<td>hydronic</td>
<td>US/MA-06</td>
<td>stove; radiant ceiling</td>
<td>US/CA-11</td>
</tr>
<tr>
<td>hydronic</td>
<td>SW-03</td>
<td>wall furnace</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>hydronic</td>
<td>SW-04</td>
<td>wall furnace; wood stove</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>hydronic; fireplace</td>
<td>US/CA-08</td>
<td>wall furnace; wood stove</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>hydronic; fireplace</td>
<td>US/CO-01</td>
<td>wall heater</td>
<td>US/CA-14</td>
</tr>
<tr>
<td>hydronic; heat pump</td>
<td>CH-01</td>
<td>wall heater</td>
<td>US/OR-03</td>
</tr>
<tr>
<td>hydronic; heat pump</td>
<td>SW-07</td>
<td>wall heater; baseboard</td>
<td>US/OR-07</td>
</tr>
<tr>
<td>hydronic; stove</td>
<td>BE-03</td>
<td>wall heaters</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>radiant</td>
<td>SW-05</td>
<td>wall heaters</td>
<td>US/OR-01</td>
</tr>
<tr>
<td>radiant ceiling</td>
<td>DK-03</td>
<td>wood stove; wall furnace</td>
<td>US/CA-01</td>
</tr>
<tr>
<td>radiant ceiling</td>
<td>US/MA-01</td>
<td>wood stove; wall furnace</td>
<td>US/CA-05</td>
</tr>
<tr>
<td>radiant ceiling panels</td>
<td>US/MA-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SITES BY BUILDING TYPE

<table>
<thead>
<tr>
<th>BUILDING TYPE</th>
<th>SITE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>attached (row) house</td>
<td>CH-01</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>CH-02</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>CH-04</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>DK-03</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>SW-04</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>SW-05</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>SW-07</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>US/AZ-08</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>US/CA-15</td>
</tr>
<tr>
<td>attached (row) house</td>
<td>US/CO-08</td>
</tr>
<tr>
<td>detached test building</td>
<td>CD-01</td>
</tr>
<tr>
<td>detached test building</td>
<td>CH-05</td>
</tr>
<tr>
<td>detached test building</td>
<td>CH-06</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/AZ-01</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/AZ-02</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/AZ-03</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/MD-02</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/MD-03</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/MD-04</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/MD-05</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/MD-06</td>
</tr>
<tr>
<td>detached test building</td>
<td>US/MD-07</td>
</tr>
<tr>
<td>detached test buildings - 4 units</td>
<td>NO-02</td>
</tr>
<tr>
<td>detached test buildings - 4 units</td>
<td>US/MD-08</td>
</tr>
<tr>
<td>detached test buildings - 6 units</td>
<td>CD-02</td>
</tr>
<tr>
<td>duplex</td>
<td>US/CA-07</td>
</tr>
<tr>
<td>duplex, mobile home</td>
<td>US/WI-02</td>
</tr>
<tr>
<td>multiple-unit housing</td>
<td>CH-03</td>
</tr>
<tr>
<td>multiple-unit housing</td>
<td>US/MA-02</td>
</tr>
<tr>
<td>multiple-unit housing - 4 units</td>
<td>US/MA-03</td>
</tr>
<tr>
<td>multiple-unit housing - 8 units</td>
<td>US/MA-01</td>
</tr>
<tr>
<td>multiple-unit housing - 70 units</td>
<td>DK-02</td>
</tr>
<tr>
<td>reconfigurable test building</td>
<td>US/CO-17</td>
</tr>
<tr>
<td>reconfigurable test building</td>
<td>US/FL-01</td>
</tr>
</tbody>
</table>

NOTE: All other buildings are single detached houses.
4. BUILDING AND SYSTEM DESCRIPTION FORMS

This chapter contains the building system description forms for each of the monitored passive and hybrid solar projects. The information for these forms was obtained from the original survey completed by the IEA Task VIII participants. Information not listed on the form was not received from the respondents. The building system description form is organized into nine categories:

1. Name
2. Location
3. Climate
4. Building Description
5. Passive Solar System
6. Monitoring
7. Performance
8. Reports
9. Notes

The language of the available reports is indicated in parentheses after the bibliographic reference. All United States reports are in English.
SITE CODE: BE-01

SITE NAME: Nandrin Direct Gain/Sunspace
LOCATION: Nandrin, Belgium

CLIMATE
Heating Degree Days: 2100
Cooling Degree Days:
Global Solar Radiation: 975 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: masonry
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): wood; liquid
Auxiliary System(s): woodstove; forced air-furnace
Number of Occupants: 4
Conditioned Floor Area: 165 m²
Aperture/Floor Area Ratio: 0.68
Global Heat Loss Coefficient: 339 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: masonry walls and floor

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/82 to 5/83
Format of Data: computer tape
Quality of Data:

PERFORMANCE

REPORTS
Concours Habitat Thermique, rapport de synthese.
Available from: Region Wallonne-Cabinet du Ministre Busquin, rue du Commerce, 31, 1040 Bruxelles, Belgique. (French)

NOTES
Most auxiliary heat provided by woodstove. Sunspace is used primarily for horticulture.
SITE CODE: BE-02

SITE NAME: Chaumont Gistoux Solar House
LOCATION: Chaumont-Gistoux, Belgium

CLIMATE
Heating Degree Days: 2100
Cooling Degree Days:
Global Solar Radiation: 975 kWh/m²

TELEPHONE:

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: masonry
Ground Coupling: basement
Number of Stories: 2.5
Auxiliary Fuel(s): liquid fuel
Auxiliary System(s): hydronic
Number of Occupants: 3
Conditioned Floor Area: 240 m²
Aperture/Floor Area Ratio: 0.23
Global Heat Loss Coefficient: 148 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: masonry walls and floor
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/82 to 5/83
Format of Data: computer tape
Quality of Data:

PERFORMANCE
Auxiliary: 40%.

REPORTS
Concours Habitat Thermique, rapport de synthese.
Available from: Region Wallonne-Cabinet du Ministre Busquin, rue du Commerce, 31,
1040 Bruxelles, Belgique. (French)

NOTES
House also has active solar system with 52 m² flat plate collectors and 30 cubic
meters of water storage. Dominant passive system is sunspace with 33m² aperture
and 16m² floor area.
SITE CODE: BE-03

SITE NAME: Rosieres Solar House
LOCATION: Rosieres, Belgium

CLIMATE
Heating Degree Days: 2100
Cooling Degree Days:
Global Solar Radiation: 975 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: masonry
Ground Coupling: slab on grade
Number of Stories: 3
Auxiliary Fuel(s): gas; wood
Auxiliary System(s): hydronic; woodstove
Number of Occupants: 4
Conditioned Floor Area: 168 m²
Aperture/Floor Area Ratio: 0.31
Global Heat Loss Coefficient: 309 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace; trombe wall
Passive Cooling System Type(s):
Thermal Storage Material: slab on grade; masonry walls
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/82 to 5/83
Format of Data: computer tape
Quality of Data:

PERFORMANCE

REPORTS
Concours Habitat Thermique, rapport de synthese.
Available from: Region Wallonne-Cabinet du Ministre Busquin, rue du Commerce, 31, 1040 Bruxelles, Belgique. (French)

NOTES
The sunspace has a 37 m² aperture and a 20 m² floor area. The Trombe wall has a 14m² collection area and is 40 cm thick.
SITE CODE: CD-01

SITE NAME: NRC Passive Solar Test Fac. CONTACT: Sherif Barakat
LOCATION: Ottawa, Canada ADDRESS: Thermal Performance Section
CLIMATE Div. of Bldg. Research NRCC
Heating Degree Days: 4674 Ottawa, Canada K1A OR6
Cooling Degree Days: 242
Global Solar Radiation: 1328 kWh/m² TELEPHONE:

BUILDING DESCRIPTION
Building Type: detached test buildings
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboard heaters
Number of Occupants: 0
Conditioned Floor Area: 28 m²
Aperture/Floor Area Ratio: 0.09
Global Heat Loss Coefficient: 26 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: varies
Other Passive Component(s):

MONITORING
Level of Monitoring: A-
Monitoring Period: 11/80 to 4/82
Format of Data: computer tape
Quality of Data:

PERFORMANCE

REPORTS
NRC Passive Solar Test Facility, Performance Summary. Available from: S. Barakat, Thermal Performance Section, Division of Bldg. Research, NRCC, Ottawa, Canada K1A OR6. (English)

NOTES
Facility consists of four 2-zone test units and 4 single-room units. Data has been collected for different types and amounts of storage for both direct gain and sunspace configurations.
SITE CODE: CD-02

LOCATION: Edmonton, Canada

CLIMATE
Heating Degree Days: 5990
Cooling Degree Days: 30
Global Solar Radiation: 1290 kWh/m²

BUILDING DESCRIPTION
Building Type: detached test buildings - 6 units
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): forced air - furnace
Number of Occupants: 0
Conditioned Floor Area: 98 m²
Aperture/Floor Area Ratio: 0.11
Global Heat Loss Coefficient: 120 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s):
Thermal Storage Material:
Other Passive Component(s):

MONITORING
Level of Monitoring: A-
Monitoring Period: 1979 to present
Format of Data: computer tape
Quality of Data:

PERFORMANCE

REPORTS

NOTES
Facility consists of 6 detached test buildings. Description is for one unit only.
SITE CODE: DK-01

SITE NAME: Lyngby Solar House
LOCATION: Lyngby, Denmark
CLIMATE
Heating Degree Days: 2829
Cooling Degree Days:
Global Solar Radiation: 1018 kWh/m²

CONTACT: Lars Olsen
ADDRESS: Thermal Insulation
Technical University
2800 Lyngby
Denmark

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: light weight concrete
Ground Coupling: insulated slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s):
Number of Occupants: 2
Conditioned Floor Area: 150 m²
Aperture/Floor Area Ratio: 0.11
Global Heat Loss Coefficient: 130 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s):
Thermal Storage Material: tile on lightweight concrete floor
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 11/82 to 9/83
Format of Data:
Quality of Data: 14 variables monitored continuously over 10 months
3 additional variables were monitored monthly

PERFORMANCE
Annual Heating Energy Balance - Passive Solar: 25%; Internal Gains: 20%;
Auxiliary: 55%. All monthly mean living space temperatures were between 17 degrees C
and 27 degrees C. Only briefly during July and December do interior temperatures
exceed the upper and lower user accepted limits.

REPORTS
Birkerod Solhus, Niels Mejlhede Jensen, Thermal Insulation Laboratory,
Technical University of Denmark, Report NR 145, 1983. (Danish)

NOTES
SITE CODE: DK-02
SITE NAME: Lystoftevaenget
LOCATION: Lyngby, Denmark
CONTACT: Thomas Pederson
ADDRESS: Dominia A/S
Studiestraede 38
1455 Kobenhavn
Denmark
CLIMATE
Heating Degree Days: 2829
Cooling Degree Days:
Global Solar Radiation: 1018 kWh/m²
TELEPHONE: 01 134546
BUILDING DESCRIPTION
Building Type: multi-family - 70 apartments
Construction Type: masonry
Ground Coupling: insulated slab on grade
Number of Stories: 2
Auxiliary Fuel(s): oil
Auxiliary System(s): oil burner
Number of Occupants: 1-4 (varies by unit)
Conditioned Floor Area: 4500 m²
Aperture/Floor Area Ratio: varies by apartment unit
Global Heat Loss Coefficient:
PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s):
Thermal Storage Material: brick (walls)
Other Passive Component(s):
MONITORING
Level of Monitoring: B-
Monitoring Period: 9/82 to 6/84
Format of Data:
Quality of Data: indoor dry bulb and auxiliary heating
were monitored on a monthly basis over 21 months
PERFORMANCE
REPORTS
None as of June 1985.
NOTES
SITE CODE: DK-03

SITE NAME: SBI Low Energy House
LOCATION: Horsholm, Denmark

CONTACT: Niels Erik Andersen
ADDRESS: SBI
Danish Bldg. Research Inst.
P.O.Box 119
DK 2970, Horsholm
Denmark

TELEPHONE: 02-865533

CLIMATE
Heating Degree Days: 2829
Cooling Degree Days:
Global Solar Radiation: 1018 kWh/m²

BUILDING DESCRIPTION
Building Type: row house
Construction Type: brick wall with cavity
Ground Coupling: insulated slab on grade
Number of Stories: 1.5
Auxiliary Fuel(s): electric
Auxiliary System(s): radiant ceiling
Number of Occupants: 2
Conditioned Floor Area: 100 m²
Aperture/Floor Area Ratio: 0.04
Global Heat Loss Coefficient: 100 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s):
Thermal Storage Material: brick
Other Passive Component(s):

MONITORING
Level of Monitoring: B-
Monitoring Period: 1978 to 1983
Format of Data: hard copy
Quality of Data: 5 electricity consumption meters monitored auxiliary & water heating, lights & appliances over nearly 5 yrs

PERFORMANCE

REPORTS
SBI Low Energy House Model-79. Available from: SBI, P.O. Box 119, DK 2970, Horsholm, Denmark. (English)

NOTES
This is a low energy, well insulated row house with adjoining walls on north and west sides.
SITE CODE: NO-01

SITE NAME: Ivilde Solar House
LOCATION: Ivilde, Voss, Norway

CONTACT: M. Ringheim
ADDRESS: Kilde
Box 229
5701 Voss, Norway

CLIMATE
Heating Degree Days: 4200
Cooling Degree Days:
Global Solar Radiation:

TELEPHONE:

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 4
Auxiliary Fuel(s):
Auxiliary System(s):
Number of Occupants: 4
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): earth contact
Thermal Storage Material: rock
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 1/81 to 1/83
Format of Data: hard copy
Quality of Data:

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 12%; Internal Gains: 51%;
Auxiliary: 37%. The cost of providing the solar heat gain, including solar aperture, storage and associated living space, is similar on a KWh basis, to the cost of electric heating.

REPORTS
Enkel utnytting av solvarme i bustadhus." Available from: KILDE, N-5701 Voss, Norway. (Norwegian)

NOTES
The monitoring was carried out to determine the solar heat gain improvements due to minor modifications to a commonly used building design. The rock storage was not insulated at time of monitoring.
SITE CODE: NO-02

SITE NAME: Trondheim Test Building
LOCATION: Trondheim, Norway

CONTACT: Johannes Gunnarshaug
ADDRESS: SINTEF Division 62
7034 Trondheim-NTH
Norway

CLIMATE
Heating Degree Days: 4799
Cooling Degree Days:
Global Solar Radiation: 912 kWh/m²

TELEPHONE: 07-592620

BUILDING DESCRIPTION
Building Type: 4 unit test building
Construction Type: wood frame
Ground Coupling: unheated crawl space
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboards
Number of Occupants: 0
Conditioned Floor Area: 17 m²
Aperture/Floor Area Ratio: 0.14
Global Heat Loss Coefficient: 19 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s):
Thermal Storage Material: hollow concrete floor; ceiling panels (in Section C)
Other Passive Component(s):

MONITORING
Level of Monitoring: B-
Monitoring Period: 1978 to 1980
Format of Data: hard copy
Quality of Data: approximately 9 variables measured for each test section

PERFORMANCE
Active thermal storage mass did not significantly reduce heating load, although it did increase comfort. Increased south glazing significantly increased the heat load.

REPORTS
Lavenergibygninger STF62 A30012." Available from: SINTEF 62, 7034 Trondheim - NTH, Norway. (Norwegian)

NOTES
north and a south room. The two middle sections are the subject of this report. One section (B) has been constructed with the economically optimum level of insulation, the other (C) the same as B with hollow concrete panels in floor and ceiling. Both are compared to the reference section A. Sections B and C each have south window area equal to 4 times the north window area. Window area in section is equally divided between north and south. Night insulation is not used. The global heat loss coefficient shown above is for Section B. In section C it is 10 W/degree K.
SITE NAME: Baerum County Low Energy House
LOCATION: Baerum County, Norway

CONTACT: Arne P. Eggen
ADDRESS: Oslo School of Arch.
 Oslo, Norway

CLIMATE
Heating Degree Days: 4237 at base 18 C (3774 at base =7 C)
Cooling Degree Days:
Global Solar Radiation: 902 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling:
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance heater
Number of Occupants: 2 to 5
Conditioned Floor Area: 100 m²
Aperture/Floor Area Ratio: 0.00
Global Heat Loss Coefficient: 100 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s):
Thermal Storage Material:
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 1984 to present
Format of Data:
Quality of Data: 24 variables are monitored at
 1 minute & 15 minute intervals

PERFORMANCE
Not available

REPORTS
"Energiriktige boliger i Bærum, EBIB Hoslemarka"
NØKES Prosjektrapport nr. 8, Bærum kommune, 1982
SITE CODE: NO-04

SITE NAME: Double Shell House at As
LOCATION: As, Norway

CONTACT: Nils Skaarner
ADDRESS: N.L.H.
1430 As, Norway

CLIMATE
Heating Degree Days: 4459 at base 18 C (3903 at base =7 C)
Cooling Degree Days:
Global Solar Radiation:

TELEPHONE: 02-942252

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame; "double envelope"
Ground Coupling:
Number of Stories: 1.5
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance heater
Number of Occupants: 3
Conditioned Floor Area: 110 m²
Aperture/Floor Area Ratio: 0.17
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace; double shell
Passive Cooling System Type(s): ventilation
Thermal Storage Material: rock bed
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 1978 to 1980
Format of Data:
Quality of Data: 24 variables monitored at 60 minute intervals over a 2 year period

PERFORMANCE

REPORTS

NOTES
The house has a 45 m² active solar collector mounted at 45 degrees and integral with the roof. The passive components have a total south aperture area of 18.9 m².
SITE CODE: NO-05

SITE NAME: Heimdal Solar House #2
LOCATION: Tiller, Norway

CLIMATE
Heating Degree Days: 4799 at base temp. 18 C
Cooling Degree Days:
Global Solar Radiation: 911 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame; masonry "double envelope"
Ground Coupling:
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance heater
Number of Occupants: 4
Conditioned Floor Area: 120 m²
Aperture/Floor Area Ratio: 0.25
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): sunspace; double shell
Passive Cooling System Type(s): ventilation
Thermal Storage Material: water drums
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 10/82 to 5/84
Format of Data: hard copy; computer tape
Quality of Data: 18 variables monitored at 60 minute intervals for 19 months spanning 2 heating seasons

PERFORMANCE
On a typical summer day the sunspace temperature remains above 30 degrees C for 8 hours, and peaks above 45 degrees C. On a typical winter day the sunspace temperature appears to remain mid-way between indoor and outdoor temperatures.

REPORTS

NOTES
The sunspace covers the entire second floor on the south side. Warm air from the top of the sunspace is drawn down along the north roof and wall into the water barrel storage.
SITE CODE: NO-06

SITE NAME: Heimdal Solar House #3
LOCATION: Tiller, Norway

CLIMATE
Heating Degree Days: 4799 at base temp. 18 C
Cooling Degree Days:
Global Solar Radiation: 911 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame; masonry "double envelope"
Ground Coupling:
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance heater
Number of Occupants: 4
Conditioned Floor Area: 120 m²
Aperture/Floor Area Ratio: 0.25
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): sunspace; double shell
Passive Cooling System Type(s): ventilation
Thermal Storage Material: earth
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 10/82 to 5/83
Format of Data: hard copy; computer tape
Quality of Data: 16 variables monitored at 15 and 60 minute intervals over 19 months spanning 2 heating seasons

PERFORMANCE
Report: Dec. 1986

REPORTS
"Energisparing i småhus - erfaringer, anbefalinger, sluttrapport, Delrapport 22" H. Granum, H. Raaten, STF62 A60004, Trondheim 1986

NOTES
The sunspace covers the entire second floor on the south side. The sunspace acts as a preheater for a vertical and roof sloped collector. Warm air is drawn down along the north sloping roof and wall into a water/air heat exchanger. Warmed water is pumped in a closed loop through an insulated volume of soil.
SITE CODE: NO-07

SITE NAME: Heimdal Low Energy House 14 CONTACT: Helge Raanen
LOCATION: Tiller, Norway ADDRESS: SINTEF Division 62
CLIMATE
Heating Degree Days: 4799 at base temp. 18 C
Cooling Degree Days:
Global Solar Radiation: 911 kwh/m²
TELEPHONE: 07-892620

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance heater
Number of Occupants: 4
Conditioned Floor Area: 140 m²
Aperture/Floor Area Ratio: 0.09
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: light weight building components
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 10/82 to 5/84
Format of Data: hard copy; computer tape
Quality of Data: 16 variables monitored over 2 heating seasons and intervening summer period

PERFORMANCE

REPORTS
"Energisparing i småhus – erfaringer, anbefalinger, sluttrapport, Delrapport II" H. Granum, H. Raanen, STF62 A8600, Trondheim 1986

NOTES
The house is equipped with a heat exchange/heat pump for hot water supply.
SITE CODE: NO-08

SITE NAME: Indre Ostfold Meier Solar Bldg. CONTACT: Meierienes Bygningskoncor
LOCATION: Mysen, Norway ADDRESS: Breigt. 10
Climate: WATERLAND, OSLO 1
Heating Degree Days: 4459 at base 18 (3950 at base 17) Norway
Cooling Degree Days: Global Solar Radiation: 990 kWh/m² TELEPHONE: 02-676880

BUILDING DESCRIPTION
Building Type:
Construction Type:
Ground Coupling:
Number of Stories:
Auxiliary Fuel(s):
electric
Auxiliary System(s):
Number of Occupants:
Conditioned Floor Area: 1040 m²
Aperture/Floor Area Ratio: 0.14
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s):
Thermal Storage Material: concrete
Other Passive Component(s):

MONITORING
Level of Monitoring: A-
Monitoring Period:
Format of Data: hard copy; computer tape
Quality of Data: 64 variables monitored every 20 minutes

PERFORMANCE

REPORTS

NOTES
This building is equipped with a 200 m² active vertical solar collector feeding
a 4.1 cubic meter thermal storage of calcium chloride hexahydrate.
SITE CODE: SW-01

SITE NAME: Str. Lagenergiprojekt for Smalus
LOCATION: Vetlanda, Sweden

CLIMATE
Heating Degree Days: 3600
Cooling Degree Days:
Global Solar Radiation: 849 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboard
Number of Occupants: 5
Conditioned Floor Area: 113 m²
Aperture/Floor Area Ratio: 0.16
Global Heat Loss Coefficient: 91 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 11/76 to 3/79
Format of Data:
Quality of Data:

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 14%; Internal Gains: 34%; Auxiliary: 52%.

REPORTS
STR Lagenergiprojekt for smalus, Vetlanda 1977-79. BKL 1979:11 (Swedish)
Address: Lund Inst. of Technology, Division of Building Tech. P.O. B 725, S-220 07 LUND Sweden

NOTES
SITE CODE: SW-02

SITE NAME: Teleborg Passive Solar Home
LOCATION: Vaxjo, Sweden
CLIMATE
Heating Degree Days: 4100
Cooling Degree Days:
Global Solar Radiation: 990 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling:
Number of Stories: 1
Auxiliary Fuel(s): electric; wood
Auxiliary System(s): forced air; stove
Number of Occupants: 1
Conditioned Floor Area: 155 m²
Aperture/Floor Area Ratio: 0.08
Global Heat Loss Coefficient: 144 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: rock bed
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 1/82 to 12/82
Format of Data: computer tape
Quality of Data:

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 30%; Internal Gains: 26%;
Auxiliary: 44%. Sunspace is used most of year with no auxiliary heat, and contributed 4600 kWh to living space.

REPORTS

NOTES
SITE CODE: SW-03

SITE NAME: Fargelanda Passive Solar Home
LOCATION: Fargelanda, Sweden

CLIMATE
Heating Degree Days: 3920
Cooling Degree Days:
Global Solar Radiation: 960 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling:
Number of Stories: 2
Auxiliary Fuel(s): wood
Auxiliary System(s): hydronic
Number of Occupants: 5
Conditioned Floor Area: 175 m²
Aperture/Floor Area Ratio: 0.15
Global Heat Loss Coefficient: 120 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: brick wall
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 8/82 to 12/80
Format of Data: hard copy
Quality of Data:

PERFORMANCE

REPORTS
SOL, TYNGD OCH VARME, Swedish Council for Building Research, T7: 1982. (Swedish) 99 STOCKHOLM

NOTES
SITE CODE: SW-04

SITE NAME: Valdemarsro Low Energy Houses
LOCATION: Malmo, Sweden

CLIMATE
Heating Degree Days: 3006
Cooling Degree Days:
Global Solar Radiation: 1092 kWh/m²

BUILDING DESCRIPTION
Building Type: row houses
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s):
Auxiliary System(s): hydronic
Number of Occupants: 3 per house
Conditioned Floor Area: 117 m²
Aperture/Floor Area Ratio: 0.03
Global Heat Loss Coefficient: 85 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 11/80 to 7/82
Format of Data: hard copy; computer tape
Quality of Data:

PERFORMANCE
Mean indoor temperature for the year is 22.5 degrees. The hot water heating system pipes were found to have uncontrolled heat losses to the homes, even when radiators were turned off. Solar gains resulted mostly in higher temperatures, not a reduction in auxiliary energy use.

REPORTS

NOTES
The project consists of 32 units, 8 of which were monitored at a B+ level. The other units were monitored at a lower level every 15 days. District heating used for all units. Performance results above are for one of the units.
SITE CODE: SW-05

SITE NAME: Smalands Taberg Low Energy Homes CONTACT: Bertil Fredlund
LOCATION: Taberg, Sweden ADDRESS: Lund Institute of Technology
CLIMATE
Heating Degree Days: 3669
Cooling Degree Days:
Global Solar Radiation:

BUILDING DESCRIPTION
Building Type: raw houses
Construction Type: wood frame; concrete
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): radiant
Number of Occupants: 25 per house
Conditioned Floor Area: 401 m²
Aperture/Floor Area Ratio: 0.39
Global Heat Loss Coefficient: 830 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab; interior walls
Other Passive Component(s):

MONITORING
Level of Monitoring: A
Monitoring Period: 5/81 to 5/83
Format of Data: computer tape
Quality of Data:

PERFORMANCE

REPORTS
Energy Conservation, Moisture and Thermal Climate in Buildings, Lund Institute of Technology, BKL 1983:1. (Swedish)

Glazed in Spaces, Christerson, M., Olsen, P., Lund Institute of Technology, BKL 1984:7. (Swedish)

NOTES
Description and performance results above are for whole structure, which is made up of four, attached, terraced houses.
SITE CODE: SW-06

SITE NAME: Bramhult Solar Houses
LOCATION: Bramhult, Sweden

CONTACT: Knut-Olov Lagerkvist
ADDRESS: Statens provningsanstalt
Box 857
S-501-15 Boras, Sweden

CLIMATE
Heating Degree Days: 3600
Cooling Degree Days:
Global Solar Radiation: 780 kWh/m²

TELEPHONE: 033-16 5000

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame; concrete
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): hydronic
Number of Occupants: 3 per house
Conditioned Floor Area: 165 m²
Aperture/Floor Area Ratio: 0.03
Global Heat Loss Coefficient: 145 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab and wall
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 11/79 to 10/80
Format of Data: hard copy; computer tape
Quality of Data:

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 27%; Internal Gains: 37%;
Auxiliary Heat: 36%.

REPORTS
Heat from solar energy and air with storage in water and ice,
Swedish Council for Building Research, D11: 1981. (English)

NOTES
Project is six single-unit houses. Dominant solar system uses 141 m² flat-plate
solar collectors with storage in water and ice.
SITE NAME: Tarnan Solar Houses
LOCATION: Landskrona, Sweden

CONTACT: Maria Christerson
ADDRESS: Lund Institute of Technology
Dept. of Bldg. Science
P.O. Box 725
S-22007 LUND, Sweden

CLIMATE
Heating Degree Days: 3006
Cooling Degree Days:
Global Solar Radiation: 1092 kWh/m²

TELEPHONE: 046-10 96 62

BUILDING DESCRIPTION
Building Type: row houses
Construction Type: wood frame
Ground Coupling:
Number of Stories: 2.5
Auxiliary Fuel(s): electric
Auxiliary System(s): hydronic - heat pump
Number of Occupants: 18 (total for all units)
Conditioned Floor Area: 861 m²
Aperture/Floor Area Ratio: 0.10
Global Heat Loss Coefficient: 945 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material:
Other Passive Component(s): shading devices in sunspace

MONITORING
Level of Monitoring: B-
Monitoring Period: 5/83 to 5/85
Format of Data: hard copy; computer tape
Quality of Data:

PERFORMANCE
Shading devices have kept summer temperature in sunspace from rising more than 3 degrees above ambient on a typical day.

REPORTS

NOTES
Project is row housing surrounding a glazed courtyard. Description and performance results are for all buildings combined.
SITE CODE: CH-01

SITE NAME: Dersbach Rowhouses
LOCATION: Hunenberg, Switzerland

CLIMATE

Heating Degree Days: 3650
Cooling Degree Days:
Global Solar Radiation: 1110 kWh/m²

BUILDING DESCRIPTION

Building Type: row houses
Construction Type: masonry
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): hydronic - heat pump
Number of Occupants: 2
Conditioned Floor Area: 160 m²
Aperture/Floor Area Ratio: 0.11
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS

Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s):
Thermal Storage Material: masonry walls and floor
Other Passive Component(s):

MONITORING

Level of Monitoring: B
Monitoring Period: 11/83 to 4/84
Format of Data: hard copy; computer tape
Quality of Data:

PERFORMANCE

REPORTS
Available from: K. Menti, Ebnetweg 10, CH-6045, Meggen, Switzerland. (French)

NOTES
Description is for one of several units in a row house arrangement.
SITE CODE: CH-02

SITE NAME: Meggen Solar Apartment Bldg.
LOCATION: Meggen, Switzerland

CONTACT: K. Menti, W. Stalder
ADDRESS: Amrein & Martinelli & Menti
Bruchstr. 77
CH-6003, Luzern
Switzerland

CLIMATE
Heating Degree Days: 3650
Cooling Degree Days:
Global Solar Radiation: 1115 kWh/m²
TELEPHONE: 041-22 27 61

BUILDING DESCRIPTION
Building Type: row houses
Construction Type: masonry
Ground Coupling:
Number of Stories: 4
Auxiliary Fuel(s): electric
Auxiliary System(s): electric; hydronic
Number of Occupants: 16 (total of all units)
Conditioned Floor Area: 978 m²
Aperture/Floor Area Ratio: 0.04
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s):
Thermal Storage Material: masonry
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 11/83 to 4/84
Format of Data: hard copy; computer tape
Quality of Data:

PERFORMANCE

REPORTS
Available from: K. Menti, Ebnetweg 10, CH-6045, Meggen, Switzerland. (French)

NOTES
Description is for entire building which is composed of 5 separate units.
SITE CODE: CH-03

SITE NAME: Adliswil Solar Apartments
LOCATION: Adliswil, Switzerland

CLIMATE
Heating Degree Days: 3660
Cooling Degree Days:
Global Solar Radiation: 1110 kWh/m²

BUILDING DESCRIPTION
Building Type: terrace apartments
Construction Type: asbestos-cement modules
Ground Coupling:
Number of Stories: 7
Auxiliary Fuel(s): oil
Auxiliary System(s): hydronic
Number of Occupants: 2 per house
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): sunspace
Passive Cooling System Type(s):
Thermal Storage Material: asbestos cement
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 11/83 to 4/84
Format of Data: hard copy; computer tape
Quality of Data: 11 variables measured

PERFORMANCE

REPORTS
Available from: Eggenberger Bauphysik AG, Brunnmattstr. 6, CH-3400, Burgdorf, Switzerland. (German)

NOTES
Total of 7 apartments in a 7 story terraced building. Each house occupies one story. Sunspace faces almost due west.
SITE CODE: CH-04

SITE NAME: Courtelary Apartments
LOCATION: Courtelary, Switzerland

CLIMATE
Heating Degree Days: 4000
Cooling Degree Days:
Global Solar Radiation: 1190 kWh/m²

BUILDING DESCRIPTION
Building Type: row houses
Construction Type: brickwall
Ground Coupling: insulated concrete slab
Number of Stories: 3
Auxiliary Fuel(s): oil
Auxiliary System(s): hydronic
Number of Occupants: 2 per house
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s):
Thermal Storage Material: concrete slab floor
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 11/83 to 4/84
Format of Data: hard copy; computer tape
Quality of Data: 12 variables measured hourly

PERFORMANCE

REPORTS
Available from: Eggenberger Bauphysik AG, Brunnmattstr. 6, CH-3400, Burgdorf, Switzerland. (German)

NOTES
There are 2 apartments per story in a 3 story building.
SITE CODE: CH-05

SITE NAME: Cannobbio Test Cell #1
LOCATION: Cannobbio, Switzerland

CONTACT: Dr. C. Spinedi
ADDRESS: Laboratorio di fisica terr.
CH-Cannobbio
Switzerland

CLIMATE
Heating Degree Days: 2720
Cooling Degree Days:
Global Solar Radiation: 1300 kWh/m²

TELEPHONE:

BUILDING DESCRIPTION
Building Type: test cell
Construction Type: concrete prefab
Ground Coupling: insulated slab
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance heater
Number of Occupants: 0
Conditioned Floor Area: 10 m²
Aperture/Floor Area Ratio: 0.02
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s):
Thermal Storage Material: concrete
Other Passive Component(s):

MONITORING
Level of Monitoring: A-
Monitoring Period: 10/82 to 4/84
Format of Data: hard copy; computer tape
Quality of Data: approximately 50 variables monitored

PERFORMANCE

REPORTS
Available from: C. Spinedi, Instituto Cantonale Tecnico - Sperimentale
CH-6952 Cannobbio, Switzerland. (Italian)

NOTES
SITE CODE: CH-06

SITE NAME: Cannobbio Test Cell #2
LOCATION: Cannobbio, Switzerland

CONTACT: Dr. C. Spinedi
ADDRESS: Laboratorio di fisica terr.
CH-Cannobbio
Switzerland

CLIMATE
Heating Degree Days: 2720
Cooling Degree Days:
Global Solar Radiation: 1300 kWh/m²

TELEPHONE:

BUILDING DESCRIPTION
Building Type: test cell
Construction Type: concrete prefab
Ground Coupling: insulated slab
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance heater
Number of Occupants: 0
Conditioned Floor Area: 10 m²
Aperture/Floor Area Ratio: 0.07
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s):
Thermal Storage Material: concrete
Other Passive Component(s):

MONITORING
Level of Monitoring: A-
Monitoring Period: 10/82 to 4/84
Format of Data: hard copy; computer tape
Quality of Data: approximately 50 variables monitored

PERFORMANCE

REPORTS
Available from: C. Spinedi, Instituto Cantonale Tecnico - Sperimentale CH-6952 Cannobbio, Switzerland. (Italian)

NOTES
SITE CODE: CH-07

SITE NAME: Schaub Solar House
LOCATION: Rothenfluh, Switzerland

CONTACT: Prof. H. H. Hauri
ADDRESS: Inst. F. Hochbautechnik ETH
8093 Zurich
Switzerland

CLIMATE
Heating Degree Days: 3560
Cooling Degree Days:
Global Solar Radiation: 1168 kWh/m²

TELEPHONE: 01-377 2855

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame; masonry
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): wood
Auxiliary System(s): wood stove (convector central heating)
Number of Occupants: 2
Conditioned Floor Area: 140 m²
Aperture/Floor Area Ratio: 0.05
Global Heat Loss Coefficient: 191 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; hybrid
Passive Cooling System Type(s):
Thermal Storage Material: clay block and plaster interior walls; concrete floor
Other Passive Component(s):

MONITORING
Level of Monitoring: B-
Monitoring Period: 1981 to 1983
Format of Data: hard copy; disk
Quality of Data: 15 min. scans for 5 weeks, daily totals for 2 heating seasons; over 30 variables monitored

PERFORMANCE

REPORTS
Available from: Prof. H. H. Hauri, Inst. F. Hochbautechnik ETH, 8093 Zurich, Switzerland. (German)

NOTES
SITE CODE: CH-08

SITE NAME: Schafer Solar House
LOCATION: Binz, Switzerland

CONTACT: Prof. H. H. Hauri
ADDRESS: Inst. F. Hochbautechnik ETH
8093 Zurich
Switzerland

CLIMATE
Heating Degree Days: 3660
Cooling Degree Days:
Global Solar Radiation: 1166 kWh/m²
TELEPHONE: 01-377 2855

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame; masonry
Ground Coupling: slab on grade
Number of Stories: 1.5
Auxiliary Fuel(s): wood
Auxiliary System(s): woodstove (convector central heating)
Number of Occupants: 4
Conditioned Floor Area: 180 m²
Aperture/Floor Area Ratio: 0.10
Global Heat Loss Coefficient: 371 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s):
Thermal Storage Material: clay block and plaster interior walls; concrete floor
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B-
Monitoring Period: 1981 to 1983
Format of Data: hard copy; disk
Quality of Data: 15 min. scans for 3 weeks, daily totals for 2 heating seasons; over 23 variables monitored

PERFORMANCE

REPORTS
Available from: Prof. H. H. Hauri, Inst. F. Hochbautechnik ETH,
8093 Zurich, Switzerland. (German)

NOTES
SITE CODE: CH-09

SITE NAME: Wieland Solar House
LOCATION: Oberglatt, Switzerland

CLIMATE
Heating Degree Days: 3660
Cooling Degree Days:
Global Solar Radiation: 1114 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame; masonry
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): wood
Auxiliary System(s): woodstove (convector central heating)
Number of Occupants: 3
Conditioned Floor Area: 140 m²
Aperture/Floor Area Ratio: 0.21
Global Heat Loss Coefficient: 183 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; hybrid
Passive Cooling System Type(s):
Thermal Storage Material: clay block and plaster interior walls; concrete floor
Other Passive Component(s):

MONITORING
Level of Monitoring: B-
Monitoring Period: 1982 to 1983
Format of Data: hard copy; disk
Quality of Data: 15 min. scans for 6 weeks, daily totals for 2 heating seasons; over 30 variables monitored

PERFORMANCE

REPORTS
Available from: Prof. H. H. Hauri, Inst. F. Hochbautechnik ETH, 8093 Zurich, Switzerland. (German)

NOTES
SITE CODE: CH-10

SITE NAME: Gmur Solar House
LOCATION: Gonten, Switzerland

CONTACT: Prof. H. H. Hauri
ADDRESS: Inst. F. Hochbautechnik ETH
8093 Zurich
Switzerland

CLIMATE
Heating Degree Days: 4240
Cooling Degree Days:
Global Solar Radiation: 1090 kWh/m²

TELEPHONE: 01-377 2855

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame; masonry
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): wood
Auxiliary System(s): woodstove (convector central heating)
Number of Occupants: 5
Conditioned Floor Area: 190 m²
Aperture/Floor Area Ratio: 0.27
Global Heat Loss Coefficient: 300 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; convective air heater; hybrid
Passive Cooling System Type(s):
Thermal Storage Material: clay block and plaster interior walls; concrete floor
Other Passive Component(s):

MONITORING
Level of Monitoring: B-
Monitoring Period: 1981 to 1983
Format of Data: hard copy; disk
Quality of Data: 15 min. scans for 6 weeks, daily totals for 2
heating seasons; over 35 variables monitored

PERFORMANCE

REPORTS
Available from: Prof. H. H. Hauri, Inst. F. Hochbautechnik ETH, 8093 Zurich, Switzerland. (German)

NOTES
SITE CODE: US/AZ-07

SITE NAME: Payson House (Site WAA) CONTACT: Donald Osborn
CLIMATE University of Arizona
Heating Degree Days: 2792 Tucson, AZ 85721
Cooling Degree Days: 368
Global Solar Radiation: TELEPHONE: (602) 626-0184

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): propane
Auxiliary System(s): forced air
Number of Occupants: 3
Conditioned Floor Area: 176 m²
Aperture/Floor Area Ratio: 0.24
Global Heat Loss Coefficient: 426 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace; mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: brick chimney; concrete slab
Other Passive Component(s): movable insulation on all glazing

MONITORING
Level of Monitoring: B
Monitoring Period: 1/82 to 6/83
Format of Data: 9-track magnetic tape may be available
Quality of Data: data not available in SERI Class B Data Base;
duration and quality not determined

PERFORMANCE

REPORTS
Monitoring of Arizona Solar Design Homes - Final Phase.
From: Solar Energy Research Facility, University of Arizona, Tucson, AZ 85721

NOTES
Monitored with standard SERI Class B procedures.
SITE CODE: US/AZ-09

SITE NAME: Yacqui House (Site WAC) CONTACT: Donald Osborn

CLIMATE
Heating Degree Days: 973 University of Arizona
Cooling Degree Days: 1563 Tucson, AZ 85721
Global Solar Radiation: 2155 kWh/m² TELEPHONE: (602) 626-0184

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboard heaters
Number of Occupants:
Conditioned Floor Area: 93 m²
Aperture/Floor Area Ratio: 0.12
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): evaporative; ventilation
Thermal Storage Material: concrete slab
Other Passive Component(s): none

MONITORING
Level of Monitoring: B
Monitoring Period: 6/82 to late 1983
Format of Data: 9-track magnetic tape may be available
Quality of Data: data not available in SERI Class B Data Base;
duration and quality not determined

PERFORMANCE

REPORTS
Monitoring of Arizona Solar Design Homes - Final Phase.
From: Solar Energy Research Facility, University of Arizona, Tucson, AZ 85721.

NOTES
SITE CODE: US/CA-04

SITE NAME: SMUD MB Residence
LOCATION: Elk Grove, California

CLIMATE
Heating Degree Days: 1579
Cooling Degree Days: 644
Global Solar Radiation: 1830 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): electric; wood
Auxiliary System(s): heat pump; wood stove
Number of Occupants: 4
Conditioned Floor Area: 167 m²
Aperture/Floor Area Ratio: 0.19
Global Heat Loss Coefficient: 385 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 3/82 to 3/83
Format of Data: hard copy
Quality of Data:

PERFORMANCE

REPORTS
Report will be available after September 1983 from the Department of Energy.

NOTES
Monitoring similar to standard SERI Class B procedures.
SITE CODE: US/CA-09

SITE NAME: Colton Conservation (Site WSE) CONTACT: Solar Group
LOCATION: Colton, California ADDRESS: Physics Department
 California State University
 6000 J Street
 Sacramento, CA 95819

CLIMATE
Heating Degree Days: 1066
Cooling Degree Days: 736
Global Solar Radiation: 1862 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: masonry
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): propane
Auxiliary System(s): forced air
Number of Occupants: 2
Conditioned Floor Area: 154 m²
Aperture/Floor Area Ratio: 0.03
Global Heat Loss Coefficient: 307 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: lightweight building materials
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 7/81 to 9/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: good continuous year of data

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 35%; Internal Gains: 46%;
Auxiliary: 18%. Despite the much smaller aperture and thermal mass of this house,
it achieved energy savings almost equal to site US/CA-08.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

Performance of Passive Solar and Energy Conserving Houses in California,

NOTES
This is a reference conservation design similar to site US/CA-08.
SITE CODE: US/CA-15

SITE NAME: Sacramento Solar Condo (Site WSK) CONTACT: Solar Group
LOCATION: Sacramento, California ADDRESS: Physics Department
CLIMATE
Heating Degree Days: 1601 California State University
Cooling Degree Days: 483 6000 J Street
Global Solar Radiation: 1832 kWh/m² Sacramento, CA 95819
TELEPHONE: (916) 454-6518

BUILDING DESCRIPTION
Building Type: central unit of 6 unit building
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): heat pump (forced air)
Number of Occupants: 1
Conditioned Floor Area: 132 m²
Aperture/Floor Area Ratio: 0.15
Global Heat Loss Coefficient: 179 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation; shading
Thermal Storage Material: concrete slab
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/81 to 3/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: ten months of almost continuous data

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 25%; Internal Gains: 36%;
Auxiliary: 39%. The relatively low heat loss coefficient kept the purchased energy
low despite the low solar contribution. Interior temperatures were very stable.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

Performance of Passive Solar and Energy Conserving Houses in California,
Golden, CO: Solar Energy Research Institute

NOTES
SITE CODE: US/CA-16

SITE NAME: Rio Linda Conservation (Site WSL) CONTACT: Solar Group
LOCATION: Rio Linda, California ADDRESS: Physics Department
 California State University
 6000 J Street
 Sacramento, CA 95819

CLIMATE
Heating Degree Days: 1601 TELEPHONE: (916) 454-6518
Cooling Degree Days: 483
Global Solar Radiation: 1832 kWh/m²

BUILDING DESCRIPTION
Building Type: Single dwelling
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): natural gas
Auxiliary System(s): forced air
Number of Occupants: 3
Conditioned Floor Area: 111 m²
Aperture/Floor Area Ratio: 0.03
Global Heat Loss Coefficient: 176 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): shading
Thermal Storage Material: concrete slab
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 2/82 to 9/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: nine months of almost continuous data

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 6%; Internal Gains: 50%;
Auxiliary: 44%. Largely due to a smaller heat loss rate, this house used less
auxiliary heat than the otherwise similar solar design, site US/CA-14.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/CO-02

SITE NAME: Boulder House (Site DMA) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 3342 TELEPHONE: (303)231-7186
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboard
Number of Occupants: 4
Conditioned Floor Area: 170 m²
Aperture/Floor Area Ratio: 0.15
Global Heat Loss Coefficient: 309 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): sunspace; vertical wall collector
Passive Cooling System Type(s): ventilation; earth contact
Thermal Storage Material: concrete walls & slab; rock bed; water tubes
Other Passive Component(s): vertical wall collector

MONITORING
Level of Monitoring: B+
Monitoring Period: 6/81 to 10/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 3 months of data missing over 16 month period

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 58%; Internal Gains: 30%;
Auxiliary: 12%. Indoor temperatures are low, averaging 18 degrees C.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
Individually controlled electric room heaters.
SITE CODE: US/CO-03

SITE NAME: Lafayette House (Site DMC) CONTACT: Building Systems Branch

CLIMATE
Heating Degree Days: 3342
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m²

TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: bermed slab
Number of Stories: 2
Auxiliary Fuel(s): natural gas
Auxiliary System(s): forced air
Number of Occupants: 2
Conditioned Floor Area: 126 m²
Aperture/Floor Area Ratio: 0.12
Global Heat Loss Coefficient: 265 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: brick wall; tiled concrete slab
Other Passive Component(s): insulating shades on south

MONITORING
Level of Monitoring: B+
Monitoring Period: 4/81 to 9/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 2 months of data missing over 12 month period

PERFORMANCE
The solar component provided 56% of the heating load from December through February.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
The building was unoccupied during the heating season, thus some rooms were not fully
heated. The average temperature in January on the main floor was 15 degrees C.
SITE CODE: US/CO-04

SITE NAME: Golden House (Site DMD) CONTACT: Building Systems Branch

CLIMATE
Heating Degree Days: 3342
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): natural gas; wood
Auxiliary System(s): forced air
Number of Occupants: 3
Conditioned Floor Area: 306 m²
Aperture/Floor Area Ratio: 0.11
Global Heat Loss Coefficient: 369 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation; earth contact
Thermal Storage Material: brick & concrete wall; tile & concrete floor
Other Passive Component(s): insulating shutters on south

MONITORING
Level of Monitoring: B+
Monitoring Period: 4/81 to 6/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 2 years continuous data available

PERFORMANCE
Auxiliary: 26%. Ceiling fans in solarium appear to distribute heat evenly and
eliminate overheating.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
The above energy balance was before building was occupied. After occupancy the
solar component dropped to 50% because the indoor temperature was maintained
2 degrees higher.
SITE CODE: US/CO-05

SITE NAME: Arvada House (Site DME) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 3342
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 2
Auxiliary Fuel(s): natural gas
Auxiliary System(s): forced air
Number of Occupants: 2
Conditioned Floor Area: 301 m²
Aperture/Floor Area Ratio: 0.14
Global Heat Loss Coefficient: 423 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation; shading
Thermal Storage Material: concrete basement; brick floor & walls
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 4/81 to 9/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: January and June data missing from 14 months
of data collection

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 50%; Internal Gains: 15%;
Auxiliary: 35%. The building has a high heat loss coefficient due to high infiltration.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
Most of main floor is a large room receiving gain through the sunspace, from sky-
lights and other south windows. House mainly occupied on weekends. Sunspace doors
to house interior only opened on sunny days during weekends, thus warming interior.
Closed sunspace overheated on sunny weekdays, often exceeding 32 degrees C.
SITE CODE: US/CO-06

SITE NAME: Westminster House (Site DMF) CONTACT: Building Systems Branch

CLIMATE
Heating Degree Days: 3342
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 2
Auxiliary Fuel(s): natural gas
Auxiliary System(s): forced air
Number of Occupants: 2
Conditioned Floor Area: 174 m²
Aperture/Floor Area Ratio: 0.15
Global Heat Loss Coefficient: 284 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation; shading
Thermal Storage Material: brick veneer walls; rock bin
Other Passive Component(s): insulated shades on south

MONITORING
Level of Monitoring: B+
Monitoring Period: 4/81 to 6/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 1 month of data missing from 23 months of continuous monitoring

PERFORMANCE
Despite a solar aperture of 15% of floor area, the solar performance was disappointing with less than 40% of mid-winter heating load met by the passive system. Rock bin storage system did not function adequately, causing heavily glazed living room to overheat often above 29 degrees C. The house experienced large temperature swings.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE NAME: Northglenn House (Site DMG)
LOCATION: Northglenn, Colorado
CLIMATE
Heating Degree Days: 3342
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m²
BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 2
Auxiliary Fuel(s): natural gas
Auxiliary System(s): forced air
Number of Occupants: 3
Conditioned Floor Area: 265 m²
Aperture/Floor Area Ratio: 0.11
Global Heat Loss Coefficient: 290 W/degree K
PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace; mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: brick veneer & concrete wall; tiled concrete floor
Other Passive Component(s): insulating/reflective (exterior) panels
MONITORING
Level of Monitoring: B+
Monitoring Period: 4/81 to 9/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 13 months of continuous data available
PERFORMANCE
Heating Season Energy Balance - Passive Solar: 49%; Internal Gains: 19%; Auxiliary: 32%. The performance might have been better if the insulating panels had been used regularly. The interior temperature was kept high, averaging 22 degrees C during the heating season.
REPORTS
A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984
NOTES
The solarium is 2 stories high. Destratification ductwork is tied to the return-air plenum for the furnace.
SITE CODE: US/CO-08

SITE NAME: Denver House #1 (Site DMH) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 3342
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m²

BUILDING DESCRIPTION
Building Type: multi-unit (central)
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): natural gas
Auxiliary System(s): forced air
Number of Occupants: 1
Conditioned Floor Area: 101 m²
Aperture/Floor Area Ratio: 0.18
Global Heat Loss Coefficient: 137 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): sunspace
Passive Cooling System Type(s): ventilation; shading
Thermal Storage Material: rock bed
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/81 to 6/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 2 months of data missing in 20 months
of continuous monitoring

PERFORMANCE
The sunspace temperature is allowed to float. However, living zone temperatures
did not exceed 24 degrees C. Heating Season Energy Balance - Passive Solar: 56%;
Internal Gains: 23%; Auxiliary: 20%.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
This is a townhouse with common east and west walls. The attached sunspace is two
stories high, separated from main house by a brick wall.
SITE CODE: US/CO-09

SITE NAME: Denver House #2 (Site DMI) CONTACT: Building Systems Branch
CLIMATE 1617 Cole Blvd.
Heating Degree Days: 3342 Golden, CO 80401
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 1
Auxiliary Fuel(s): natural gas
Auxiliary System(s): forced air
Number of Occupants: 2
Conditioned Floor Area: 257 m²
Aperture/Floor Area Ratio: 0.10
Global Heat Loss Coefficient: 253 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation; shading
Thermal Storage Material: brick wall; tiled concrete slab
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 4/81 to 10/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 15 months of continuous data available

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 29%; Internal Gains: 38%; Auxiliary: 37%. The passive contribution was only 15% in December. The living room temperature occasionally exceeded 27 degrees C due to solar gains.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
Solar aperture is 9% of the floor area.
SITE NAME: Aurora House #1 (Site DMJ)
LOCATION: Aurora, Colorado
CONTRACT: Building Systems Branch
ADDRESS: Solar Energy Research Inst.
1617 Cole Blvd.
Golden, CO 80401

CLIMATE
Heating Degree Days: 3342
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m²

TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): gas; wood
Auxiliary System(s): forced air; radiant stove
Number of Occupants: 2
Conditioned Floor Area: 121 m²
Aperture/Floor Area Ratio: 0.11
Global Heat Loss Coefficient: 187 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; mass wall
Passive Cooling System Type(s): ventilation; earth contact; shading
Thermal Storage Material: brick on wall & floor; concrete wall
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 6/81 to 9/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 15 months of continuous data available

PERFORMANCE
The Heating Season Energy Balance is uncertain because a woodstove was used during the whole winter period. Estimates of wood heat in the auxiliary give the following
Heating Season Energy Balance - Passive Solar 50%; Internal Gains: 21%;
Auxiliary: 29%. 'Interior temperatures were kept relatively cool, averaging 17.8 degrees C.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
The house has a garage along the west wall and a north side air-lock entry way.
SITE CODE: US/CO-11

SITE NAME: Aurora House #2 (Site DMK) CONTACT: Building Systems Branch

CLIMATE
Heating Degree Days: 3342
Cooling Degree Days: 347
Global Solar Radiation: 1805 kWh/m²

TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 2
Auxiliary Fuel(s): natural gas
Auxiliary System(s): forced air
Number of Occupants: 3
Conditioned Floor Area: 189 m²
Aperture/Floor Area Ratio: 0.17
Global Heat Loss Coefficient: 197 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete wall with selective surface
Other Passive Component(s): reflective interior curtains; insulating drapes

MONITORING
Level of Monitoring: B+
Monitoring Period: 4/81 to 9/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 2 months of missing data in 16 months of monitoring

PERFORMANCE
Solar provided about 50% of the January-February heating load. Due to improper operation of the reflective curtains and a leaky mass wall ventilator.

REPORTS

NOTES
The mass wall is two and a half stories high. Aperture area is 17% of the floor area. The reflective curtains were not always correctly operated during winter, resulting in decreased solar performance and large temperature swings.
SITE CODE: US/CO-12

SITE NAME: Aurora House #3 (Site DML)
LOCATION: Aurora, Colorado

CLIMATE
- Heating Degree Days: 3342
- Cooling Degree Days: 347
- Global Solar Radiation: 1805 kWh/m²

BUILDING DESCRIPTION
- Building Type: single detached
- Construction Type: wood frame
- Ground Coupling: basement
- Number of Stories: 2
- Auxilary Fuel(s): natural gas
- Auxilary System(s): forced air
- Number of Occupants: 2
- Conditioned Floor Area: 162 m²
- Aperture/Floor Area Ratio: 0.09
- Global Heat Loss Coefficient: 232 W/degree K

PASSIVE SOLAR SYSTEMS
- Passive Heating System Type(s): direct gain
- Passive Cooling System Type(s): ventilation
- Thermal Storage Material: brick veneer wall; concrete wall & slab in basement
- Other Passive Component(s): none

MONITORING
- Level of Monitoring: B+
- Monitoring Period: 6/81 to 9/82
- Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
- Quality of Data: 2 months of missing data in 14 months of monitoring

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 51%; Internal Gains: 18%; Auxilary: 31%. North bedrooms remained typically 11 degrees C cooler than the family room on sunny winter days.

REPORTS

SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
The solar aperture is 9% of the floor area.
SITE CODE: US/CO-13

SITE NAME: Tillotson House (Site DMM) CONTACT: Building Systems Branch
CLIMATE
1617 Cole Blvd.
Golden, CO 80401
Heating Degree Days: 5262
Cooling Degree Days:
Global Solar Radiation:

TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade with north berm
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboards
Number of Occupants: 3
Conditioned Floor Area: 218 m²
Aperture/Floor Area Ratio: 0.23
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace; mass wall
Passive Cooling System Type(s): none
Thermal Storage Material: concrete wall
Other Passive Component(s): insulating shades & shutters

MONITORING
Level of Monitoring: B+
Monitoring Period: since 1/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 1 month of data missing in 10 months monitoring, monitoring is continuing

PERFORMANCE

REPORTS

NOTES
The building has a partial north berm.
SITE CODE: US/CO-15

SITE NAME: Acorn House (Site MBA) CONTACT: Building Systems Branch
(CONTACT)
(CLIMATE)
Heating Degree Days: 3342 1617 Cole Blvd.
Cooling Degree Days: 347 Golden, CO 80401
Global Solar Radiation: 1805 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): forced air (switched to natural gas)
Number of Occupants: varies
Conditioned Floor Area: 200 m²
Aperture/Floor Area Ratio: 0.14
Global Heat Loss Coefficient: 327 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation; shading
Thermal Storage Material: tile floor in solarium
Other Passive Component(s): insulating night curtain on solarium glazing

MONITORING
Level of Monitoring: B+
Monitoring Period: 11/81 to 6/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: monitoring period: 11/81 to 6/83; information
completeness of data is not available

PERFORMANCE
Auxiliary: 26%.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
This is a manufactured panelized house with a 2 story solarium. The solarium is
open to the living area and can be vented to the attic. Occupancy is atypical. It
is a sales model, thus unoccupied during the night. The thermostat setting was
about 13 degrees C.
SITE CODE: US/CT-01

SITE NAME: Tolland House (Site NEC) CONTACT: Building Systems Branch
CLIMATE 1617 Cole Blvd.
Heating Degree Days: 3528 Golden, CO 80401
Cooling Degree Days:
Global Solar Radiation: 1219 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboard
Number of Occupants: 4
Conditioned Floor Area: 162 m²
Aperture/Floor Area Ratio: 0.13
Global Heat Loss Coefficient: 251 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): shading
Thermal Storage Material: brick faced concrete wall; concrete slab floor
Other Passive Component(s): insulating drapes & sliding panels for windows

MONITORING
Level of Monitoring: B+
Monitoring Period: 9/81 to 4/83
Format of Data: 9-track magnetic tapes; hard copy
Quality of Data: 1 month missing data (available soon)
in 21 continuous months of monitoring

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 29%; Internal Gains: 24%; Auxiliary: 46%. Occupants kept north bedroom doors closed, thus solar gain had little effect on these rooms where the day time temperature would drop below 15 degrees C even on sunny days.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-224B, Solar Energy Research Institute, 1984

NOTES
Two sets of sliding glass doors provide some control over heat flows between the sunspace and other zones.
SITE CODE: US/FL-01

SITE NAME: FSEC Passive Cooling Laboratory
LOCATION: Cape Canaveral, Florida

CONTACT: Florida Solar Energy Center
ADDRESS: 300 State Road 401
Cape Canaveral, FL 32920

CLIMATE
Heating Degree Days: 407
Cooling Degree Days:
Global Solar Radiation: 1711 kWh/m²

TELEPHONE: (305)783-0300

BUILDING DESCRIPTION
Building Type: reconfigurable test building
Construction Type: post & beam
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s):
Auxiliary System(s):
Number of Occupants:
Conditioned Floor Area: 120 m²
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient: variable

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): none
Passive Cooling System Type(s): ventilation
Thermal Storage Material: none
Other Passive Component(s): wing walls for natural ventilation

MONITORING
Level of Monitoring: A-
Monitoring Period: since 1982
Format of Data: 9-track magnetic tape
Quality of Data: high quality detailed data collection for intermittent short periods

PERFORMANCE

REPORTS
Wing Walls to Improve Natural Ventilation; Full Scale Results and Other Reports.
From: Florida Solar Energy Center, 300 State Road 401, Cape Canaveral, FL 32920

NOTES
Performance testing is ongoing. The facility is unoccupied.
SITE CODE: US/GA-03

SITE NAME: Suwanee House (Site SSF)
LOCATION: Suwanee, Georgia

CLIMATE
Heating Degree Days: 1645
Cooling Degree Days:
Global Solar Radiation: 1548 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: unheated basement
Number of Stories: 2
Auxiliary Fuel(s): electric; propane
Auxiliary System(s): furnace; resistance heater
Number of Occupants: 2
Conditioned Floor Area: 204 m²
Aperture/Floor Area Ratio: 0.07
Global Heat Loss Coefficient: 530 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: brick over concrete floor slab
Other Passive Component(s): night insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/82 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 5 months continuous data available beginning in January, 1983

PERFORMANCE

REPORTS

NOTES
SITE CODE: US/GA-04

SITE NAME: Atlanta House (Site SSG) CONTACT: Building Systems Branch
LOCATION: Atlanta, Georgia ADDRESS: Solar Energy Research Inst.
CLIMATE 1617 Cole Blvd.
Heating Degree Days: 1645 Golden, CO 80401
Cooling Degree Days:
Global Solar Radiation: 1548 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame (brick veneer)
Ground Coupling: unheated basement; crawl space
Number of Stories: 1
Auxiliary Fuel(s): gas
Auxiliary System(s): forced air central furnace
Number of Occupants: 3
Conditioned Floor Area: 368 m²
Aperture/Floor Area Ratio: 0.04
Global Heat Loss Coefficient: 443 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: tiled concrete floor
Other Passive Component(s): night insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 3/82 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 6 months continuous data available for
the 1982-83 heating season

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 23%; Internal Gains: 26%;
Auxiliary: 50%.

REPORTS
Passive Solar Performance: Summary of 1981-82 Class B Results, Swisher et al.,

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
The sunspace is incorporated into the living zone, but can be separated by glass
doors. Two ceiling fans can be used to adjust comfort levels.
SITE CODE: US/IA-01

SITE NAME: Peosta House (Site MAA) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 3728
Cooling Degree Days:
Global Solar Radiation: 1511 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling:
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): forced air
Number of Occupants: 4
Conditioned Floor Area: 171 m²
Aperture/Floor Area Ratio: 0.22
Global Heat Loss Coefficient: 244 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab
Other Passive Component(s): none

MONITORING
Level of Monitoring: B
Monitoring Period: 5/81 to ?
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: Extent of usable data unknown

PERFORMANCE

REPORTS
A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/MA-01

SITE NAME: Braintree Building (Site NEP) CONTACT: Marlene Hoey
LOCATION: Braintree, Massachusetts ADDRESS: Braintree Housing Auth.

CLIMATE
Heating Degree Days: 3122 TELEPHONE: (617) 848-1484
Cooling Degree Days: 367
Global Solar Radiation: 1272 kWh/m²

BUILDING DESCRIPTION
Building Type: multifamily (8 units)
Construction Type: wood frame
Ground Coupling:
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): radiant ceiling
Number of Occupants: 1
Conditioned Floor Area: 48 m²
Aperture/Floor Area Ratio: 0.24
Global Heat Loss Coefficient: 59 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab; concrete wall
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/82 to 2/84
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available for at least 5 months (1982-83 heating season)

PERFORMANCE

REPORTS
Passive Solar Performance: Summary of 1982-83 Class B Results, SERI,

NOTES
SITE CODE: US/MA-02

SITE NAME: Mattapoisett Building (Site NES) CONTACT: June Mendell
LOCATION: Mattapoisett, Massachusetts ADDRESS: Mattapoisett Housing Auth.
 Town Hall
 P.O. Box 358
 Mattapoisett, MA 02739

CLIMATE
Heating Degree Days: 3122
Cooling Degree Days: 367
Global Solar Radiation: 1272 kWh/m²

TELEPHONE: (617) 727-5448

BUILDING DESCRIPTION
Building Type: multifamily
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): radiant ceiling panels
Number of Occupants: 47 m²
Conditioned Floor Area: 47 m²
Aperture/Floor Area Ratio: 0.22
Global Heat Loss Coefficient: 41 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace; vertical rockbed
Passive Cooling System Type(s): none
Thermal Storage Material: concrete slab; rock storage wall
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 1/83 to 7/84
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data:

PERFORMANCE

REPORTS
Report available from MA Executive Office of Energy Resources, 100 Cambridge St.,
Room 1500, Boston, MA 02202.

NOTES
SITE CODE: US/MA-03

SITE NAME: Cummington Building (Site NEU) CONTACT: Thomas Nagle
LOCATION: Cummington, Massachusetts ADDRESS: Hampshire County Regional
CLIMATE Housing Authority
Heating Degree Days: 3366 99 Main Street
Cooling Degree Days: Global Solar Radiation: 1219 kWh/m² TELEPHONE: (413) 527-9357
Global Heat Loss Coefficient: 55 W/degree K

BUILDING DESCRIPTION
Building Type: multifamily (4 units)
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): propane
Auxiliary System(s): pulse-fired boiler
Number of Occupants:
Conditioned Floor Area: 59 m²
Aperture/Floor Area Ratio: 0.13

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace; mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab; concrete wall
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 4/83 to 7/84
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data:

PERFORMANCE

REPORTS
Report available from MA Executive Office of Energy Resources, 100 Cambridge St.,
Room 1500, Boston, MA 02202.

NOTES
SITE CODE: US/MA-04

SITE NAME: Hamilton House (Site NEA) CONTACT: Building Systems Branch
CLIMATE 1617 Cole Blvd.
Heating Degree Days: 3123 Golden, CO 80401
Cooling Degree Days:
Global Solar Radiation: 1272 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: masonry
Ground Coupling: slab on grade; earth sheltered
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): heat pump
Number of Occupants: 3
Conditioned Floor Area: 195 m²
Aperture/Floor Area Ratio: 0.19
Global Heat Loss Coefficient: 263 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): earth contact; shading
Thermal Storage Material: concrete block; concrete slab
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/81 to 5/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available, 4 months of 81-82 & 5 months of 82-83 heating seasons

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 26%; Internal Gains: 18%;
Auxiliary: 56%. The house has a relatively low infiltration rate, due to the exten-
sive use of earth berming. However, heat loss coefficient is relatively high because
of the large glazing area. The solar contribution was 34% of the heating load in
January but decreased in spring, probably because of large overhang above the major
direct gain component. The building's ability to retain solar heat was disappoint-
ing, as the auxiliary heaters activated soon after sundown on sunny winter days.
This should improve with the use of night insulation.

REPORTS

Passive Solar Performance: Summary of 1982-83 Class B Results, SERI,

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES

111
SITE CODE: US/MA-05

SITE NAME: Orange House (Site NEB) CONTACT: Building Systems Branch
LOCATION: Orange, Massachusetts ADDRESS: Solar Energy Research Inst.

CLIMATE
Heating Degree Days: 3528 1617 Cole Blvd.
Cooling Degree Days:
Global Solar Radiation: 1219 kWh/m² Golden, CO 80401
TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboard
Number of Occupants: 3
Conditioned Floor Area: 125 m²
Aperture/Floor Area Ratio: 0.15
Global Heat Loss Coefficient: 125 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete wall; concrete slab
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 9/81 to 8/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data for 12 consecutive months, except for Oct. and Dec.

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 47%; Internal Gains: 17%;
Auxiliary: 36%. The average interior temperature of this house was maintained at
21 degrees C over the heating season. The living zone temperature was quite stable
despite large sunspace temperature swings.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
Internal gains were quite low due to the location of some major appliances in the
basement.
SITE CODE: US/MA-06

SITE NAME: Lexington House (Site NEJ) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 3123
Cooling Degree Days:
Global Solar Radiation: 1272 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: unheated basement
Number of Stories: 2
Auxiliary Fuel(s): natural gas
Auxiliary System(s): baseboard (hydronic)
Number of Occupants: 3
Conditioned Floor Area: 205 m²
Aperture/Floor Area Ratio: 0.13
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): shading
Thermal Storage Material: brick chimney; concrete slab
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 2/82 to 5/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: building monitored for 15 months,
but only 9 are presently in data archive

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 16%; Internal Gains: 42%;
Auxiliary: 43%. House was heated for less than $200 in 1982-83.

REPORTS
Passive Solar Performance: Summary of 1982-83 Class B Results, SERI,

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/MA-07

SITE NAME: Carlisle House (Site NPV) CONTACT: MA Institute of Technology
LOCATION: Carlisle, Massachusetts ADDRESS: Lincoln Laboratory

CLIMATE
Heating Degree Days: 3123
Cooling Degree Days:
Global Solar Radiation: 1272 kWh/m² TELEPHONE: (617)862-5500

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): heat pump
Number of Occupants:
Conditioned Floor Area: 273 m²
Aperture/Floor Area Ratio: 0.12
Global Heat Loss Coefficient: 331 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: brick chimney; concrete slab; tile
Other Passive Component(s): none

MONITORING
Level of Monitoring: B
Monitoring Period: 4/81 to
Format of Data: 9-track magnetic tape; 1600 BPI; EBCDIC
Quality of Data: high-quality data at 6 minute intervals for over one year with very few data gaps

PERFORMANCE

REPORTS
Class B Passive Solar Monitoring of the PV House in Carlisle, MA, Duffy, J.,
From: Solar Energy Research Institute, 1617 Cole Blvd., Golden, CO 80401

NOTES
Some wood was burned for auxiliary heating. Monitoring of this house concentrated on a 93 m² photovoltaic array, but also includes 22 variables regarding heating/cooling performance.
SITE CODE: US/ME-01

SITE NAME: Topsham House (Site NEH) LOCATION: Topsham, Maine
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 4166 Cooling Degree Days:
Global Solar Radiation: 1210 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): basement
Number of Occupants: 2
Conditioned Floor Area: 143 m²
Aperture/Floor Area Ratio: 0.13
Global Heat Loss Coefficient: 147 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: lightweight building materials
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/81 to 5/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of 4 months data from 1981-82 &
 8 months data from 82-83 heating seasons

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 43%; Internal Gains: 15%;
Auxiliary 42%. The greenhouse provided significant heat to the house on sunny days,
but the lack of thermal storage caused rapid cooling of both the house and
greenhouse at night.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES

115
SITE CODE: US/NH-01

SITE NAME: Northwood House (Site NEM) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 4089
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: post and beam; masonry
Ground Coupling: basement
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboard
Number of Occupants: 3
Conditioned Floor Area: 179 m²
Aperture/Floor Area Ratio: 0.16
Global Heat Loss Coefficient: 140 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation; earth contact
Thermal Storage Material: brick floor; concrete block walls; water tubes
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/81 to 2/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: data collected for 15 months, but summer data may not be available

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 43%; Internal Gains: 17%;
Auxiliary: 40%.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

Passive Solar Performance: Summary of 1982-83 Class B Results, SERI,

NOTES
The sunspace was kept relatively warm so plants could be grown, reducing the potential heat delivered to the living space. The house is heavily earth-bermed.
SITE CODE: US/NC-02

SITE NAME: Carrboro House (Site SSM) CONTACT: Building Systems Branch

CLIMATE
Heating Degree Days: 1952
Cooling Degree Days:
Global Solar Radiation: 1491 kWh/m²

TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): forced air
Number of Occupants:
Conditioned Floor Area: 152 m²
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient: 343 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/81 to 12/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 7 months of reasonably complete data
(one full heating season)

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 29%; Internal Gains: 43%;
Auxiliary: 28%. Daily temperature swings were large. Interior temperature was very
even. In January, for instance, temperatures frequently fell below 15 degrees and
over 27 degrees C.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/NC-03

SITE NAME: Black Mountain House (Site SSK) CONTACT: Building Systems Branch

CLIMATE
Heating Degree Days: 2246 TELEPHONE: (303)231-7186
Cooling Degree Days:
Global Solar Radiation: 1510 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): electric resistance
Auxiliary System(s): baseboards
Number of Occupants: 2
Conditioned Floor Area: 83 m²
Aperture/Floor Area Ratio: 0.13
Global Heat Loss Coefficient: 168 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; half mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete block walls; concrete slab
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/81 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: although spread over 2 years, data available for every month of year

PERFORMANCE

REPORTS

NOTES
SITE CODE: US/ND-01

SITE NAME: Fargo House (Site MBD) CONTACT: Building Systems Branch
CLIMATE
1617 Cole Blvd.
Golden, CO 80401
Heating Degree Days: 5150
Cooling Degree Days: 262
Global Solar Radiation: 1384 kWh/m² TELEPHONE: (303)231-7062

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling:
Number of Stories: 2
Auxiliary Fuel(s): electric; wood
Auxiliary System(s): baseboard; wood stove
Number of Occupants: 2
Conditioned Floor Area: 167 m²
Aperture/floor Area Ratio: 0.07
Global Heat Loss Coefficient: 153 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: phase change container wall
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 2/82 to 6/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data for 5 month period

PERFORMANCE

REPORTS
Passive Solar Performance: Summary of 1982-83 Class B Results, SERI,

NOTES
SITE CODE: US/OK-01

SITE NAME: Edmond House (Site SSA) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 2069
Cooling Degree Days:
Global Solar Radiation: 1682 kWh/m²

TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: post & beam
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): forced air
Number of Occupants: 4
Conditioned Floor Area: 232 m²
Aperture/Floor Area Ratio: 0.18
Global Heat Loss Coefficient: 646 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): shading
Thermal Storage Material: concrete slab; tile; stone chimney
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/81 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: data recorded for 13 months; quality questionable

PERFORMANCE

REPORTS
A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/OR-01

SITE NAME: Adair House
LOCATION: Hillsboro, Oregon

CLIMATE
Heating Degree Days: 2662
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: crawlspace; partial floor slab over decking
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): wall heaters
Number of Occupants: 2
Conditioned Floor Area: 118 m²
Aperture/Floor Area Ratio: 0.07
Global Heat Loss Coefficient: 138 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/82 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available for one year

PERFORMANCE

REPORTS
Bonneville Power Administration report to be published.

NOTES
SITE NAME: Conifer House
LOCATION: Hillsboro, Oregon

CONTACT: Mark McKinstry MS-PEGB
ADDRESS: Bonneville Power Admin.
Box 3621
Portland, OR 97208

CLIMATE
Heating Degree Days: 2662
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m²

TELEPHONE: (303) 230-5544

BUILDING DESCRIPTION
Building Type: single detached
Construction Type:
Ground Coupling:
Number of Stories:
Auxiliary Fuel(s): gas
Auxiliary System(s): forced air
Number of Occupants:
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material:
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/82 to 10/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available for one year

PERFORMANCE

REPORTS
Bonneville Power Administration report to be published.

NOTES
SITE CODE: US/OR-03

SITE NAME: Edwards House
LOCATION: Hillsboro, Oregon

CONTACT: Mark McKinstry MS-PEGB
ADDRESS: Bonneville Power Admin.
Box 3621
Portland, OR 97208

CLIMATE
Heating Degree Days: 2662
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m²

TELEPHONE: (303) 230-5544

BUILDING DESCRIPTION
Building Type: single detached
Construction Type:
Ground Coupling:
Number of Stories:
Auxiliary Fuel(s): electric
Auxiliary System(s): wall heater
Number of Occupants:
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material:
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/82 to 10/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available for one year

PERFORMANCE

REPORTS
Bonneville Power Administration report to be published.

NOTES
SITE CODE: US/OR-04

SITE NAME: Shelter House
LOCATION: Hillsboro, Oregon

CONTACT: Mark McKinstry MS-PEGB
ADDRESS: Bonneville Power Admin.
Box 3621
Portland, OR 97208

CLIMATE
Heating Degree Days: 2662
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m²

TELEPHONE: (303) 230-5544

BUILDING DESCRIPTION
Building Type: single detached
Construction Type:
Ground Coupling:
Number of Stories:
Auxiliary Fuel(s): electric
Auxiliary System(s): floor heaters
Number of Occupants:
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material:
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/82 to 8/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available for 10 months

PERFORMANCE

REPORTS
Bonneville Power Administration report to be published.

NOTES
SITE CODE: US/OR-05

SITE NAME: Waibel House
LOCATION: Hillsboro, Oregon

CONTACT: Mark McKinstry MS-PEGB
ADDRESS: Bonneville Power Admin.
Box 3621
Portland, OR 97208

CLIMATE
Heating Degree Days: 2662
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m²

TELEPHONE: (303) 230-5544

BUILDING DESCRIPTION
Building Type: single detached
Construction Type:
Ground Coupling:
Number of Stories:
Auxiliary Fuel(s): electric
Auxiliary System(s): forced air
Number of Occupants:
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material:
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/82 to 10/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available for one year

PERFORMANCE

REPORTS
Bonneville Power Administration report to be published.

NOTES
SITE CODE: US/OR-06

SITE NAME: Cameo House
LOCATION: Hillsboro, Oregon

CONTACT: Mark McKinstry MS-PEGB
ADDRESS: Bonneville Power Admin.
 Box 3621
 Portland, OR 97208

TELEPHONE: (303) 230-5544

CLIMATE
Heating Degree Days: 2662
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type:
Ground Coupling:
Number of Stories:
Auxiliary Fuel(s):
Auxiliary System(s):
Number of Occupants:
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material:
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/82 to 8/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available for ten months

PERFORMANCE

REPORTS
Bonneville Power Administration report to be published.

NOTES
SITE CODE: US/OR-07

SITE NAME: Hawley House
LOCATION: Hillsboro, Oregon

CLIMATE
Heating Degree Days: 2662
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type:
Ground Coupling:
Number of Stories:
Auxiliary Fuel(s):
Auxiliary System(s):
Baseboards; wall heater
Number of Occupants:
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material:
Other Passive Component(s):

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/82 to 10/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of data available for one year

PERFORMANCE

REPORTS
Bonneville Power Administration report to be published.

NOTES
SITE CODE: US/OR-08

SITE NAME: Modena Homes
LOCATION: Eugene, Oregon

CONTACT: National Solar Data Network
ADDRESS: U.S. Dept. of Energy
Argonne National Lab
9700 South Cass Avenue
Argonne, IL 60439

CLIMATE
Heating Degree Days: 2696
Cooling Degree Days: 129
Global Solar Radiation: 1390 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): furnace
Number of Occupants: 2
Conditioned Floor Area: 139 m²
Aperture/Floor Area Ratio: 0.14
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): shading
Thermal Storage Material: concrete slab; water drums
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/80 to 5/81
Format of Data: hard copy or 9-track tape may be available
Quality of Data: majority of data for one full heating season

PERFORMANCE

REPORTS
Comparative Report: Performance of Passive Solar Space Heating Systems,
From: National Technical Information Service, 5285 Port Royal Road,
Springfield, VA 22161.

NOTES
The indoor temperature was maintained very high in this house. Movable insulation jammed and was not entirely effective. Significant shading by external obstructions limited solar input.
SITE CODE: US/OR-09

SITE NAME: ODOE House #1
LOCATION: Tumalo, Oregon

CLIMATE
Heating Degree Days: 3944
Cooling Degree Days:
Global Solar Radiation: 1606 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: concrete block foundation
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s):
Number of Occupants:
Conditioned Floor Area:
Aperture/Floor Area Ratio:
Global Heat Loss Coefficient: 339 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab
Other Passive Component(s):

MONITORING
Level of Monitoring: B
Monitoring Period: 4/81 to 3/82
Format of Data: hard copy available; magnetic tape or diskette possible
Quality of Data: hourly data for a full year on 7 variables adequate for energy balance

PERFORMANCE

REPORTS

NOTES
SITE CODE: US/RI-02

SITE NAME: Jamestown House (Site NEL)
LOCATION: Jamestown, Rhode Island

CLIMATE
Heating Degree Days: 3318
Cooling Degree Days:
Global Solar Radiation: 1281 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboard
Number of Occupants: 0
Conditioned Floor Area: 110 m²
Aperture/Floor Area Ratio: 0.15
Global Heat Loss Coefficient: 176 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: lightweight building materials
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 11/81 to 1/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: good continuous data for last half of 81-82 and 1st half of 1982-83 heating seasons

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 34%; Internal Gains: 4%; Auxiliary 62%. House was unoccupied, so internal gains are very low. Also, the temperature was allowed to float some months and sometimes went below 10 degrees C.

REPORTS

NOTES
Summer data was collected, but is not presently in archive.
SITE CODE: US/SC-01

SITE NAME: Manning House (Site SSJ) CONTACT: Building Systems Branch
LOCATION: Manning, South Carolina ADDRESS: Solar Energy Research Inst.
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 1380
Cooling Degree Days: 1589 kWh/m²
Global Solar Radiation: 1589 kWh/m²

TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: vented crawl space
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance forced air
Number of Occupants: 28 m²
Conditioned Floor Area: 28 m²
Aperture/Floor Area Ratio: 1.48
Global Heat Loss Coefficient: 70 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): sunspace; mass wall
Passive Cooling System Type(s): ventilation
Thermal Storage Material: brick; concrete block; concrete slab
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/81 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: limited months of data in archive

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 38%; Internal Gains: 29%;
Auxiliary: 33%.

REPORTS

Passive Solar Performance: Summary of 1982-83 Class B Results, SERI,

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/TX-01

SITE NAME: Houston House (Site SSB) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 776 TELEPHONE: (303)231-7186
Cooling Degree Days:
Global Solar Radiation: 1556 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame (brick veneer)
Ground Coupling: slab on grade
Number of Stories: 2
Auxiliary Fuel(s): gas
Auxiliary System(s): central furnace
Number of Occupants: 2
Conditioned Floor Area: 196 m²
Aperture/Floor Area Ratio: 0.09
Global Heat Loss Coefficient: 405 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: lightweight building materials
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 1/83 to 5/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: although monitored for longer, only
 4 months of data in data base (2/83-5/83)

PERFORMANCE

REPORTS
A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE NAME: Usry Direct Gain (Site MBG)
LOCATION: Richmond, Virginia

CLIMATE
Heating Degree Days: 2188
Cooling Degree Days:
Global Solar Radiation: 1435 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: crawl space
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): forced air - heat pump
Number of Occupants: 0
Conditioned Floor Area: 110 m²
Aperture/Floor Area Ratio: 0.16
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; mass wall
Passive Cooling System Type(s):
Thermal Storage Material: concrete block
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 7/82 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data:

PERFORMANCE

REPORTS

NOTES
SITE CODE: US/VA-03

SITE NAME: Usry Solarium (Site MBY) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 2188
Cooling Degree Days:
Global Solar Radiation: 1435 kWh/m²

TELEPHONE: (303)231-7062

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: crawl space
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): forced air - heat pump
Number of Occupants: 0
Conditioned Floor Area: 143 m²
Aperture/Floor Area Ratio: 0.20
Global Heat Loss Coefficient:

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): regenerative rock bed
Thermal Storage Material: rock bed
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 4/82 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data:

PERFORMANCE

REPORTS

NOTES
SITE CODE: US/VA-04

SITE NAME: Stephens City House (Site SSL) CONTACT: Building Systems Branch
CLIMATE 1617 Cole Blvd.
Heating Degree Days: 2500 Golden, CO 80401
Cooling Degree Days: Global Solar Radiation: 1391 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: slab on grade
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance - baseboard heaters
Number of Occupants: 2
Conditioned Floor Area: 112 m²
Aperture/Floor Area Ratio: 0.19
Global Heat Loss Coefficient: 160 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; mass wall (water)
Passive Cooling System Type(s): ventilation
Thermal Storage Material: concrete slab; water wall
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/81 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 9 months data in archive

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 22%; Internal Gains: 38%;
Auxiliary: 40%.

REPORTS
Passive Solar Performance: Summary of 1982-83 Class B Results, SERI,

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/VA-05

SITE NAME: Richmond House (Site SSN) CONTACT: Building Systems Branch
CLIMATE 1617 Cole Blvd.
Heating Degree Days: 2147 Golden, CO 80401
Cooling Degree Days:
Global Solar Radiation: 1437 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: vented crawl space
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): resistance - baseboard heaters
Number of Occupants: 3
Conditioned Floor Area: 115 m²
Aperture/Floor Area Ratio: 0.21
Global Heat Loss Coefficient: 233 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; mass wall (water)
Passive Cooling System Type(s):
Thermal Storage Material: water wall
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 10/81 to 9/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: data collected for 18 continuous months but only
12 in data base at present (summer missing)

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 45%; Internal Gains: 24%;
Auxiliary: 30%. The large thermal mass maintained comfortable temperatures without
overheating. A nighttime temperature setback allowed temperature in the bedrooms to
drop below 15 degrees C on cloudy winter days.

REPORTS

Passive Solar Performance: Summary of 1982-83 Class B Results, SERI,

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE NAME: Newport House (Site NED)
LOCATION: Newport, Vermont

CLIMATE
Heating Degree Days: 4836
Cooling Degree Days:
Global Solar Radiation: 1212 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 1
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboards
Number of Occupants: 1
Conditioned Floor Area: 134 m²
Aperture/Floor Area Ratio: 0.06
Global Heat Loss Coefficient: 117 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: lightweight building materials
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/81 to 1/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: 9 months of good data in archive

PERFORMANCE
Solar affects were primarily during the day with little storage.

REPORTS

NOTES
SITE CODE: US/VT-03

SITE NAME: South Royalton House (Site NEK) LOCATION: South Royalton, Vermont
LOCATION: South Royalton, Vermont 1617 Cole Blvd.
CLIMATE Golden, CO 80401
Heating Degree Days: 4089 TELEPHONE: (303)231-7186
Cooling Degree Days:
Global Solar Radiation: 1213 kWh/m²

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: insulated slab foundation
Number of Stories: 2
Auxiliary Fuel(s): electric
Auxiliary System(s): baseboards
Number of Occupants: 4
Conditioned Floor Area: 136 m²
Aperture/Floor Area Ratio: 0.10
Global Heat Loss Coefficient: 145 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: lightweight building materials
Other Passive Component(s): none

MONITORING
Level of Monitoring: B+
Monitoring Period: 11/81 to 1/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: data collected for 15 months but 6 intermittent months not in archive

PERFORMANCE
Heating Season Energy Balance - Passive Solar - 19%; Internal Gains: 34%;
Auxiliary: 47%. The second floor experienced large temperature swings and significant overheating, which reduced solar performance.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/WI-01

SITE NAME: Eau Claire House (Site MAC) CONTACT: Building Systems Branch
 1617 Cole Blvd.
 Golden, CO 80401

CLIMATE
Heating Degree Days: 4660
Cooling Degree Days:
Global Solar Radiation: 1304 kWh/m² TELEPHONE: (303)231-7186

BUILDING DESCRIPTION
Building Type: single detached
Construction Type: wood frame
Ground Coupling: basement
Number of Stories: 1
Auxiliary Fuel(s): propane
Auxiliary System(s): forced air
Number of Occupants: 2
Conditioned Floor Area: 168 m²
Aperture/Floor Area Ratio: 0.19
Global Heat Loss Coefficient: 163 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain; sunspace
Passive Cooling System Type(s): ventilation
Thermal Storage Material: brick walls; concrete floor
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 5/81 to 7/82
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: majority of 5 months of continuous data available

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 26%; Internal Gains: 17%;
Auxiliary: 56%. Due to the efficiency of the building envelope, the auxiliary
heating needs were low for such a cold climate. The solar component contributed 26% of
the winter heating load. Although the solarium temperature fluctuated a great
deal, the temperature in the rest of the house was more stable and comfortable.

REPORTS

A Guide to Using the Class B Passive Solar Performance Data, William A. Kolar,
SERI/SP-254-2248, Solar Energy Research Institute, 1984

NOTES
SITE CODE: US/WI-02

SITE NAME: Spencer House (Site MBB) CONTACT: Building Systems Branch
CLIMATE 1617 Cole Blvd.
Heating Degree Days: 4660 Golden, CO 80401
Cooling Degree Days: Global Solar Radiation: 1304 kWh/m² TELEPHONE: (303)231-7062

BUILDING DESCRIPTION
Building Type: duplex, mobile home
Construction Type: wood frame
Ground Coupling: crawl space
Number of Stories: 1
Auxiliary Fuel(s): propane
Auxiliary System(s): forced air
Number of Occupants: varies
Conditioned Floor Area: 94 m²
Aperture/Floor Area Ratio: 0.08
Global Heat Loss Coefficient: 127 W/degree K

PASSIVE SOLAR SYSTEMS
Passive Heating System Type(s): direct gain
Passive Cooling System Type(s): ventilation
Thermal Storage Material: lightweight building materials
Other Passive Component(s): movable insulation

MONITORING
Level of Monitoring: B+
Monitoring Period: 12/81 to 1/83
Format of Data: 9-track magnetic tape, 1600 or 6250 BPI
Quality of Data: limited data in archive

PERFORMANCE
Heating Season Energy Balance - Passive Solar: 34%; Internal Gains: 4%; Auxillary: 62%. Much of the relatively small heat loss is due to infiltration. With the building unoccupied the internal temperature was allowed to float, and without significant mass it often exceeded 27 degrees C. Such overheating would normally result in venting, thus reducing the net solar gains.

REPORTS

NOTES
5. PERFORMANCE DATA FOR SYSTEM EVALUATION FORMS

This chapter contains more detailed information on some of the monitored buildings described in Chapter 4. Drawings and photographs are presented to more fully illustrate the architectural character of the passive solar homes. Also, performance data is presented for a typical summer and winter day and for annual energy performance. Findings from the monitoring program are also summarized. Together, this information provides greater insight into the design, construction, operation and performance of the monitored passive solar projects than provided in Chapter 4. This information should assist the reader in selecting candidate projects from which to obtain performance data.
Performance data for systems evaluation

PROJECT TITLE
Direct gain house with integrated sunspace.
BE-01

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows, key components and modes of operation)

1st LEVEL

2nd LEVEL

SYSTEM SCHEMATIC
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)
The sunspace is the most important area of this house and has essentially an
horticultural reason.

It's also important to note that the auxiliary heating provides for a very big
part form the wood oven which is placed in the living.
Performance data for systems evaluation

PROJECT TITLE
Direct gain house with added sunspace and solar collector.

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows, key components and modes of operation)

SYSTEM SCHEMATIC

Collectors:
1. sunspace (33m²) with mass wall storage.
2. solar collector with water storage (30m³)

Distribution:
1. radiation and convection from wall storage
2. radiators using energy from the water storage

Auxiliary: fuel burner

DHW: from the same solar collector

Controls:
- always priority to DHW boiler
- differential thermostat to control storage or burner
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

The direct solar gains were essentially researched during the pre-design of the house (choice of materials, orientation of glazing, attached sunspace).

The monitoring has shown a very low energy load so that on an economical point of view, the active system (solar collector) can difficultly be justified.

Source of Information: 145
Performance data for systems evaluation

PROJECT TITLE

Direct gain house with integrated sunspace and trombe wall.

BUILDING AND SYSTEM DESCRIPTION

(plans, sections, system schematics showing energy flows, key components and modes of operation)

GROUND FLOOR

SYSTEM SCHEMATIC

AXONOMETRY
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...) The direct solar gains were essentially researched during the predesign of the house.

The integrated sunspace has two functions:
- solar captor and horticultural

That's the reason why it's necessary to maintain the 10°C minimum.

The hot water production needs to use continually the gas burner as shown with system schematic. That system has to be modify.

Finally, it's a pity that the house is not better insulated.

Source of Information:
Passive and Hybrid
Solar Low Energy Buildings

NEFF 181
House P. Schaub, Rothenfluh

1 Collector
2 Hot air
3 Cold air
4 Rockbed
5 Floor with passive discharge
6 Stove
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)
Mean indoor temp. over 24h and total heating period 18.6 °C
Cost of solar system 8.5% of total
House works well and is liked by users

Source of Information: __________
Passive and Hybrid Solar Low Energy Buildings

NEFF 181
House S. Schäfer, Binz

1 South glazing
2 Massive floor
3 Stove
4 Hot water collector
5 Patio
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

Mean indoor temp. over 24 hours and total heating period: 15.5°C

Cost of solar system (only insul. shutters): 3%

House is relatively cool because user prefers heating less and saving wood, which he chops himself.

Source of Information: [Blank]
Passive and Hybrid
Solar Low Energy Buildings

NEFF 181
House M. Wieland, Oberglatt

1 Collector-window
2 Hot-air-duct
3 " " -distributor
4 Return-air
5 Rock bed
6 Floor with passive discharge
7 Stove
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

Mean indoor temp. over 24h and total heating period \(18.2\, ^\circ\text{C}\)

Cost solar system 12 \% of total

House works well and is liked by users

Source of Information: 153
Passive and Hybrid Solar Low Energy Buildings

House Dr. H. Guér, Gonten

1. Collector
2. Concrete
3. Storage slab
4. Return loop
5. Direct gain
6. Passive discharge
7. Stove
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)
Mean indoor temp. over 24 h and total heating period 18.9°C
Cost of solar system 11% of total
House works well and is liked by users

Source of Information: _____________________________ 155
Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE

PASÍSSIVE SOLAR HOUSE

DK-01

BUILDING AND SYSTEM DESCRIPTION

(plans, sections, system schematics showing energy flows, key components and modes of operation)
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

thermal comfort with room temperatures 15-35°C accepted

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Users</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source of Information: 157
Passive and Hybrid
Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
SBI Low Energy House Model 79
- with a 410 mm cavity brick wall
DK-03

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows, key components and modes of operation)
The primary objective of this project was to develop a set of construction details for highly insulated cavity walls in low rise buildings. The details developed are applicable to other housing types as well. Measured heating energy consumption close to predicted.
Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
PASSIVE SOLAR HEATING IN A PRIVATE DWELLING

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows, key components and modes of operation)

ORIGINAL DESIGN:

What solar energy gains can be obtained by relatively small modifications to a commonly used building design? This question was the starting point for the project.

MODIFIED BUILDING:

SOUTH FACING WALL:

160
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

The building modifications have resulted in significant solar energy gains, but have also resulted in additional living space, a veranda, and additional cellar space, for a total cost of approx. 45,000 kr (1980). For a similar building on more suitable foundations it should be possible to obtain similar results at 60% - 70% of the costs. By estimating a user value for the additional living space, the kwh price for solar energy will be similar to the electricity price.

By use of solar energy and wood plane improved insulation it is not difficult to reduce the demand for electricity/oil heating in a dwelling by 50% relative to the typical 1950-80 dwelling. The rock heat storage is not yet insulated, and has mainly acted as a cooling source on very hot days.

Performance data for systems evaluation

PROJECT TITLE
Low Energy Buildings

Address:
SINTEF 62
7034 Trondheim - NTH
NORWAY

BUILDING AND SYSTEM DESCRIPTION

270 mm concrete slabs in floor and ceiling.

TEST HOUSE

Different designs for the ventilation-syst. have been used. Compare B and C. Both systems have been used both in B and C.
Note: Solar shadings are steered by thermostats. The set points in sections B and C are a couple of degrees different.

Typical Summer Day 1979-07-12 Clear day

<table>
<thead>
<tr>
<th>[W/m²]</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>30</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

North rooms

Ambient temp.

Hor. solar rad.

Performance Summary

Monthly Heating Load

- No night insulation.
- A smaller window area would have reduced or given almost the same heating load over a year.

- Heat provided by passive solar is in this sense zero or negative compared to a building with a smaller window area.

<table>
<thead>
<tr>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Heat provided by passive solar

Heat provided by internal generation

Heat provided by auxiliary system

Annual Summary

- Section B: 0.5 MWh incl. internal gain (light bulbs).

Conclusions/Findings (thermal comfort, user acceptance, costs, etc...)

- South room in reference section (A) has lower demand than north room (same window area).
- South room in section B and C consumed more energy than north room (window area south 4* window area north). There is no night insulation. This means net heat loss even through "good" windows (K=1.0 W/m²K).
- Active mass does not reduce the heating demand (significantly), though the comfort level in C is much better than in B.
- Extra insulations works! B 46 % of A.
- Due to technical problems in construction, the heat loss in sect. C is too large. Problems: Cold bridges, air leakages both to rooms and inside insulations.

F. Salvesen, J. Gunnarshaug
Performance data for systems evaluation

PROJECT TITLE

DOUBLE SHELL HOUSE AT ÅS

DANSKEBUD

1430 Ås, Norway

BUILDING AND SYSTEM DESCRIPTION

PLANT 1.FLOOR

PLANT 2.FLOOR

COLLECTORS:

SUNSPACE 14.7 m²

AIR COLLECTOR 45 m²

STORAGE:

ROCK BED 13 m³

DISTRIBUTION:

CLOSED LOOP CIRCULATION - FROM COLLECTOR VIA STORAGE TO AIRSPACE IN WALLS AND ATTIC.

VENTILATION:

FRESH AIR SUPPLIED VIA SOLAR HEAT LOOP.

PREHEATING OF HOT WATER:

150 M POLYETHYLENE PIPE IN ROCK STORAGE.
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

- The building has a considerably lower heating need than other buildings with comparable insulation standards. This is in part due to the double shell construction, which eliminates heat loss to the ground, and which provides preheating of the ventilation air.

- The building works most fully during the middle of the winter, when conventional solar systems produce the least amount of additional energy at these latitudes.

- The preheating of hot water does not function satisfactorily as the heat flow from the rockbed to the ground during the summer is greater than expected.

- The costs involved are quite high, but are justified by the fact that the building is a prototype.

Source of Information: 'RESUPONENIUCGE RAECIFORMED REPORT NO 4'
Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
Solar House No. 2, Heimdal
Tonnstacogrenda 3
7035 Tiller, Norway

BUILDING AND SYSTEM DESCRIPTION

Exhaust Air
Collector
Sun Space
Double Glazing
Double Plus Single Glazing
Double Wall W. Air Cavity
Storage (in water barrels)

SECTION

1. FLOOR PLAN
2. FLOOR PLAN
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

Thermal comfort: Winter, spring, fall: Good
Summer: Some overheating

User acceptance: Good

Costs, energy use: No conclusions yet available

Source of Information:
Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
SOLAR HOUSE NO. 3, HEIMDAL
TÅRSTADGRØNDA 5
7075 TILLER, NORWAY

BUILDING AND SYSTEM DESCRIPTION

EXHAUST AIR

COLLECTOR
SUN SPACE
DOUBLE GLAZING
DOUBLE PLUS SINGLE GLAZING

DOUBLE WALL W. AIR CAVITY
WATER/AIR HEAT EXCHANGER

STORAGE IN GROUND
(WATER FILLED PIPE LOOP)

SECTION

1. FLOOR PLAN
2. FLOOR PLAN
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

- Thermal comfort: good
- User acceptance: good
- Costs, energy use: No conclusions yet available

Source of Information:

\[\text{Performance Summary} \]

- Monthly Heating Load
- Heat provided by passive solar
- Heat provided by internal generation
- Heat provided by auxiliary system

\[\text{Annual Summary} \]

- Load Reduction from Passive Solar
- Load Reduction from Internal Heat Generation
- Net Auxiliary Heating

- Heating Load Provided by Passive Solar
- Heating Load Provided by Internal Generation
- Heating Load Provided by Auxiliary Heating
Passive and Hybrid
Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
LOW ENERGY HOUSE, NO. 14, HEIMDAL
TEUNSTADGRENSA 19
7075 TILLE, NORWAY

BUILDING AND SYSTEM DESCRIPTION

EXHAUST AIR

TRIPLE GLAZING W. TWO SnO2 COATINGS

INDOOR CLIMATE CONTROL
(MICRO PROCESSOR)

HEAT EXCHANGERS
HEAT PUMP FOR HOTWATER SUPPLY

SECTION

1. FLOOR PLAN

2. FLOOR PLAN
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

- Energy savings cost due to extra insulation: 0.45 kr/kWh (7% real interest rate)
- Energy saved due to extra insulation: 6000 kWh
- Energy savings cost due to exhaust air/domestic hot water heat pump: 0.75 kr/kWh
- Another similar system at the site is more cost effective (0.40 kr/kWh)
- Energy saved due to heat pump: 2000 kWh
- Night set back: 0.35–0.40 kr/kWh
- Energy saved due to night set back: 1000 kWh
- Heating: 7000 kWh/year, domestic hot water: 2000 kWh/year
- Lights, appliances, etc: 7000 kWh
- Thermal comfort: satisfactory - some overheating, winter: good
- User acceptance: good

Performance data for systems evaluation

PROJECT TITLE
STR, LÄGENERGIPROJEKT FÖR SMÄHUS.

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows, key components and modes of operation)
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

Overheating hasn't been a problem. In one year the indoor temperature has been higher than +26 C only during a couple of days. This happened when the house was unoccupied. Once the house is occupied, the occupants can be expected to use curtains and open windows in order to lower the temperature. The mechanical ventilation rate can be controlled by the occupants. During nights the system was usually turned off as the supply devices were too noisy.

Passive and Hybrid
Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE Passive Solar technology in Teleborg
 in Växjö.

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows,
key components and modes of operation)

Figure 1. Solar heating system.

Figure 2. Sunspace with rock bed.

Figure 3. The Ulriks house
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)
The sunspace is an area which can be used as a living space during most of the year.
An area which doesn't require any space-heating, instead it contributes to the space-heating of the building itself. This contribution was 4600 kWh.
The indoor temperature (excl. sunspace) rarely went above +30°C thanks to the sunspace working as a thermal buffer.
Thermal shutters should be installed in the sunspace to decrease night time heat losses.
During the summer when it is sunny and warm the sunspace should be opened i.e. the whole south window of the sunspace should be pushed aside and the windows up by the roof opened.
Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
PASSIVE SOLAR ONE FAMILY HOUSE
WITH GREENHOUSE AND SOLID BRICKWALL
IN FÄRGELENDÄ, SWEDEN

BUILDING AND SYSTEM DESCRIPTION
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

Thanks to the solid brickwall which makes the temperature-variation even, the thermal comfort in the house is high. During the summer hardly no sun radiation gets into the house, because the windows are effectively shadowed, which makes the house more comfortable than comparable standard houses.

No auxiliary cooling is needed. The users accept a temperature-variation of 20-24°C during the winter, which makes the energy needed for heating low, 2500 - 5000 kWh/year.

The house is financed with ordinary governmental housing loans and is not especially expensive, compared with an ordinary house.

Source of Information: ___________ 177
Performance data for systems evaluation

PROJECT TITLE
VALOEMINASRO - LOW ENERGY TERRACED HOUSES

SW-04

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows, key components and modes of operation)
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

The figures are measured data from our special monitored measuring-house witch is a gable house. The mean indoor temperature during this year was 22.5 C. The insulation and tightness of the houses and the heat recovery on the ventilation have reached the expectations and the heat power required in the houses is not higher than calculated. The water-carried radiator system however has uncontrolled losses of heat through insufficiently insulated hot water pipes. Even when all the radiators are turned off, the hot water pipes are emitting large amounts of heat. This problem causes a limited heat control. Free heat like solar radiation, domestic electricity and heat from people does not lead to a reduction of the energy consumption. The only result is a rise of the indoor temperature.

Source of Information: Egon Lange
Performance data for systems evaluation

PROJECT TITLE
Low energy houses at Smålands Taberg with heat recovery and greenhouses

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows, key components and modes of operation)
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

Load reduction from green house is only ~2%. This gives, with the energy price 0.25 Sw.kr, a saving of ~30 Sw.kr for each greenhouse/year.
Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
Heat from solar energy and air with storage in water and ice

SW-06

BUILDING AND SYSTEM DESCRIPTION
(plans, sections, system schematics showing energy flows, key components and modes of operation)

Figure 2.2 Schematic section through the group meeting plant buildings.

Figure 3.3 A simplified diagram of the heating system.

Figure 6.5 Section through one of the houses.

Figure 4.1 Simplified energy flow diagram.
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...)

Future houses should incorporate measures for reducing transmission losses through the building envelope and the ventilation losses due to air infiltration. With the current low price of electricity the houses should ideally have been heated with electric base board heaters. The solar group heating plant in this project is not profitable today, especially on such a small scale being connected only to six houses.

Source of Information: 183
Performance data for systems evaluation

PROJECT TITLE
TARNAN - A GLACED COURTYARD.

BUILDING AND SYSTEM DESCRIPTION

[Diagram of TARNAN - A GLACED COURTYARD, showing ground, first, and second floors.]
CONCLUSIONS/FINDINGS (thermal comfort, user acceptance, costs, etc...) THEY HAVE SUCCEEDED IN HOLDING THE TEMPERATURE IN THE SUNSPACE DOWN TO 2-3°C ABOVE THE OUTDOOR TEMPERATURE THIS SUMMER. THIS HAS BEEN POSSIBLE BY AN EFFICIENT USE OF THE CURTAINS AND SHUTTERS.

IT WILL BE EVEN MORE INTERESTING TO FOLLOW THE COMING WINTER WHEN WE, AMONG OTHER THINGS, WILL BE ABLE TO SEE WHAT HAPPENS WITH THE TEMPERATURE IN THE SUNSPACE. IF THE TEMPERATURE GOES DOWN BELOW ABOUT 5°C THEN THE PLANTS MAY HAVE DIFFICULTIES OF SURVIVING.
The entire south wall of this small one-floor house in central Arizona is a double-glazed greenhouse. Glass panels in a massive storage wall allow direct gain through the greenhouse to the house interior. Thermal storage is provided by the mass wall, the concrete, brick and tile floor and a forced-air-fed rock storage bin under the north half of the house. Summer cooling is by controlled venting from the top of the greenhouse to prevent daytime overheating and provide night cooling of the storage masses. Exterior roll-down shades provide additional protection against overheating.
CONCLUSIONS/FINDINGS

In 1980-81, solar energy supplied 53.02 GJ of the 69.24 GJ building heating load for a solar fraction of 77%. The solar system performed smoothly and efficiently throughout the heating season. Except for 10.54 MJ of electric heat, all of the auxiliary heating energy used was supplied by the wood stove in the living room.

It was found that a pulse of heat took approximately 4.5 hours to travel through the Trombe wall. It was suggested that this relatively long time may be due in part to the fact that the hollow blocks in the wall are filled with loose sand which does not conduct heat as well as the solid concrete.

This single detached residence is located in Davis, California. The system uses 25.4 square meters of direct-gain collector, part of which is in a 7.5 square meter clerestory. Solar energy is stored in a series of steel tubes filled with 13,625 liters of water. Additional storage is supplied by the floor slab. Night-time losses are reduced by the use of insulating curtains on the windows and shutters on the clerestory. Auxiliary energy is supplied by a wood stove and a gas-fired wall furnace.
CONCLUSIONS/FINDINGS

The overall performance of the system was very good with an annual solar fraction of 80%. If the internal gains had been lower for January and February, the system could have used more solar energy and the annual solar fraction would have been higher.

The system was designed with a good collector to storage ratio which prevented large temperature swings inside the building.

The heating season began with an average storage temperature of 24°C. The storage temperature decreased during the winter, and by February the average storage temperature was 20°C. This drop in temperature accounts for the fact that more energy was delivered from storage than was delivered to storage. The additional energy delivered from storage was energy collected during the summer months and released during the heating season.

The overall system performance suffered somewhat due to the manual operation of the movable insulation. The net savings from the use of the movable insulation were 3.56 GJ, but because the shutters and curtains were only open to collect 56% of the available solar energy, 16.27 GJ of solar energy were lost or not collected (based on average collection efficiency of 69%).

(by Vitro Labs for NSPN)
This small single-story slab-on-grade house comprises the western half of a duplex. It receives direct gain through south windows and a 45° tilted clerestory. The clerestory glazing charges 1100 gallons (4169 L) of water contained in four steel cylinders. Warm air from the clerestory is ducted to the north bedrooms. The clerestory also serves as a solar chimney, which can be opened to vent warm air during the summer.
CONCLUSIONS/FINDINGS

The solar components met more than 60% of the heating load with little auxiliary heating needed. The interior temperature was allowed to fluctuate a great deal, often falling below 60°F (15°C) during cloudy weather.

This two-story slab-on-grade house in north-central California has a large attached greenhouse. The greenhouse has both vertical glazing and skylights. There are barrels filled with 385 gallons (1459 L) of water along the north wall of the greenhouse. One-third of this wall is glazed to allow direct solar gain to the living space. Clerestory windows provide direct gain to the second floor and open to allow venting of warm air.
CONCLUSIONS/FINDINGS

Despite the large glazing area, the heat loss coefficient was relatively small due to the low infiltration rate of 0.16 air change per hour. The solar components met about half the winter heating load, with decreased performance only during a very cloudy December. The greenhouse was generally not open to the interior living space, resulting in large greenhouse temperature swings. The interior temperature was stable, however, with no tendency to overheat. Wood burning is included in the monthly auxiliary heating figures. It does not appear as auxiliary heating on the hourly data plot, but wood use is obvious from the sudden indoor temperature increases in the evenings.

(by J. Swisher & T. Cowing)
This large two-story frame house is located near the northern California coast. South windows, skylights, and clerestory windows provide 367 ft² (34.1 m²) of direct gain solar aperture. There are also 114 ft² (10.6 m²) of east-facing windows. A rock bed located beneath the west rooms can be charged by warm air that is drawn from near the clerestory by a thermostatically controlled fan. This system was not in operation during the monitoring period.
CONCLUSIONS/FINDINGS

The solar heating contribution was about 60% of the heating load throughout the winter months. In the cool coastal climate, the solar components continue to provide useful heat year-round. There was little overheating. However, the interior temperature swings were large on sunny days, and the temperature dropped below 80°F (26°C) during cloudy winter weather. Wood burning is included in the monthly auxiliary heating figures. It does not appear as auxiliary heating on the hourly data plot, but wood use is obvious from the sudden indoor temperature increases in the evenings.

This small house is located in the Sierra Nevada mountains of eastern California. Large direct gain windows charge a two-story solarium which has an exposed slab floor. A 20 cm-thick adobe wall extends from ground level to 1 meter above the second floor level.
CONCLUSIONS/FINDINGS

The solar component met about half the winter heating load. Most of the remaining energy requirement was met by internal heating from a hot tub located in the solarium. The average indoor temperature is low because the occupant kept the bedrooms at 50°F (10°C) or below at night, often opening a bedroom window even in mid-winter. Wood burning is included in the monthly auxiliary heating figures. It does not appear as auxiliary heating on the hourly data plot, but wood use is obvious from the sudden indoor temperature increases in the evenings.

Performance data for systems evaluation

PROJECT TITLE
US/CA-15

Site WSK
Sacramento, California

BUILDING AND SYSTEM DESCRIPTION

This two-story condominium in downtown Sacramento has common east and west walls. It receives direct solar gain from south windows and a clerestory. The first-floor slab is partly exposed for thermal mass.
The solar contribution was only 25% of the total heating load due to the shading problem and the cloudy Sacramento winter weather. The relatively low heat loss coefficient helped keep the purchased energy use low. The interior temperature was very stable, staying between 65°F and 70°F (18°-21°C) about 90% of the time.

This suburban Denver single-story home uses earth-sheltering and direct gain to minimize auxiliary heating needs. The roof and north, east and west walls are covered with earth. Thermal storage is provided by the 10 cm thick floor slab, 20 cm thick externally insulated concrete walls and fifty-two 200-liter water-filled drums located immediately behind the south glazing. Beadwall movable insulation reduces night-time heat losses from the 36 square meters of south glazing. Heat distribution is by convection and radiation. A plenum between the roof and the ceilings of the rooms carries warm air rising off of the water drums to the north side of the house.
CONCLUSIONS/FINDINGS

Solar energy supplied 30.45 GJ of the 44.65 GJ building heating load for a solar fraction of 68%. These savings were realized at an expense of 243 kwh of electricity to operate the Beadwall®. Auxiliary energy was supplied by the fireplace. Temperatures in the building averaged 23°C during this time. The maximum temperature observed during the heating season was 30°C and the minimum was 15°C. Interestingly, the overheating occurred in mid-November as the result of the use of the fireplace.

Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
Denver Metro Site DMA
Boulder, Colorado

US/CO-02

BUILDING AND SYSTEM DESCRIPTION

Solar collection:
- A Site-built vertical wall collector (216 ft²)
- B Greenhouse
- C Active domestic hot water system

Thermal storage:
- D Concrete mass wall (poured in place)
- E 450-gallon Kewanee tubes
- F Rock storage bed (200 ft²)
- G Slab floor with tile
- H Fireplace wall
- J Hot tub

Heat distribution:
- K Warm-air duct from wall collector and greenhouse
- L Fan
- M Air-water heat exchanger
- N Return-air duct
- P Warm air to north rooms; motorized damper
- Q Summer cool-air intake; auxiliary heat

Thermal buffers:
- R Garage, bathrooms
- S Air-lock entryway
- T Earth berm
CONCLUSIONS/FINDINGS

This is a two-story building with a relatively large solar aperture area (15% that of the floor area) divided between an attached sunspace and a site-built, south-wall air heater. The air heater charges a 300-ft² (8.5-m²) rock bin located under the northern half of the house. The sunspace has both vertical and sloped glazing and a tile floor. It is separated from the living area by a concrete wall and four 450-gal (1700-L) water-filled tubes. The sunspace also contains a hot tub, providing additional mass and, because it’s used frequently, a significant internal heating source.

The solar components were effective, contributing about 60% of the heating load during the winter. This high passive heating ratio was partly because of relatively low indoor temperatures, averaging 65°F (18°C). Individually controlled electric room heaters allowed the occupants to heat a small area of the building, resulting in low overall building temperatures and efficient use of solar and electric energy.

Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE

Denver Metro
Site DMD
Golden, Colorado

BUILDING AND SYSTEM DESCRIPTION

Solar collection:
A. Solarium (Total south-glazing area: 355 ft²)
B. Clerestory (provides limited direct-gain to living room)
C. Active solar domestic hot-water system

Thermal storage:
D. Mass wall (brick veneer on concrete)
E. Slab floor with tile surface
F. Concrete foundation walls

Heat distribution:
G. Paddle fans
H. Louvered power-exhaust vent
J. Furnace return-air duct from solarium

Auxiliary heat:
K. Woodstoves (2)
L. Gas forced-air furnace
M. Partial earth berm
N. Air-lock entryway
CONCLUSIONS/FINDINGS

This is a large, two-story house with the north side bermed so that the lower level is below grade. A large direct-gain component charges a two-story solarium, which is open to most interior rooms. The solarium has a tile floor and is backed by an 8-in. (20-cm)-thick concrete wall with brick veneer. Two small ceiling fans in the solarium also help distribute warm air. The south windows are fitted with manually operated insulating shutters; however, the shutters are usually left open.

The building's heat loss coefficient, though relatively high, is low for such a large building. The solar component provided nearly 60% of the winter heating load before the building was occupied, and about 50% thereafter [when the indoor temperature was kept 4°F (2°C) higher]. The excellent interior air circulation heated the building very evenly on sunny days and prevented overheating in the solarium.

Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE

SITE NAME
ARVADA, COLORADO

BUILDING AND SYSTEM DESCRIPTION

Solar collection:
A. Attached greenhouse-style sunspace
B. Clerestory glazing
C. Additional south-facing glass

Thermal storage:
D. Mass walls — brick veneer on frame
E. Brick paved flooring
F. Basement slab and 8" concrete walls

Heat distribution:
G. Warm-air duct from sunspace to bedrooms and basement mass
H. Thermastically controlled fan
J. Powered destratification units (circulate heat from loft, ceilings)

Auxiliary heat:
K. Gas forced-air furnace
M. Brick stove fireplace

Thermal buffers:
N. North-zoned garage, bedrooms
P. Air-lock entryway

206
CONCLUSIONS/FINDINGS

This house is a large two-story design with an attached sunspace and a basement. Most of the main level is an open great room that receives direct gain through the sunspace, from skylights, and from additional south windows. The great room is also open to a loft above. The upper level and the basement also have south windows.

The sunspace has a tile floor and both vertical and sloped glazing. The design includes a thermostatically controlled fan to dump warm sunspace air into the basement. Apparently this fan was not used, however, since the sunspace performance depended on the presence of the homeowners. During the week, the house was usually empty, with the sunspace doors left closed (because the sunspace was quite cold in the morning). On sunny winter days, the sunspace temperature exceeded 90°F (32°C); but with the doors closed, the interior remained cool and the backup furnace was needed in the early evening. On weekends, the homeowners were usually home and opened the sunspace doors on sunny days. This resulted in a cooler sunspace, a warmer interior, and less furnace use in the evening.

The building's heat loss coefficient was extremely large, due to infiltration. It was not possible to pressurize the building adequately for an infiltration test. The builders were informed of this and have had better results with their more recent buildings based on this design. The solar component performed well, meeting about half of the large heating load. Tighter construction and better control of heat distribution could increase this percentage considerably.

Passive and Hybrid
Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
Denver Metro Site DMG
US/CO-07
Northglenn, Colorado

BUILDING AND SYSTEM DESCRIPTION

Solar collection:
A Sun space (total direct-gain glazing area: 210 ft²)
B Trombe walls with insulating/reflective panels (glazing area: 57 ft²)

Thermal storage:
C Ceramic tile on 4 inch concrete slab floor
D Mass wall — brick veneer on solid-ground concrete masonry units (165 ft²)

Heat distribution:
E Interfloor windows between bedrooms and sun space
F Distratification ductwork tied to return-air plenum for furnace
G Ceiling vent to rooftop ventilators

Auxiliary heat:
H Woodstove
J Gas forced-air furnace

Thermal buffers:
K Air-lock vestibule
L North-zoned garage, storage area, bathroom
CONCLUSIONS/FINDINGS

This house is a large two-story design with a basement. One-third of the solar glazing is backed by a brick-veneered concrete wall with hinged exterior insulating panels (which were rarely used). The remaining glazing charges a two-story solarium, which is open to the interior living space. The solarium has a tile floor and is backed by a brick-veneered wall.

The solar component supplied about 50% of the winter heating load. This figure would probably have been higher had the insulating panels been used regularly. Also, the interior temperature was kept high, averaging 71°F (22°C) throughout the heating season.

Passive and Hybrid
Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
Denver Metro
Site IMH
Denver, Colorado

BUILDING AND SYSTEM DESCRIPTION

Solar apertures:
A. Attached greenhouse
B. Sliding glass doors

Storage:
C. Thermal mass wall
D. Rock storage bin
E. Slab floor

Mechanical heat transfer:
F. Attic and wall duct from greenhouse to rock bin
G. Wind-driven ventilator and damper
H. Return-air duct
J. Fan

Auxiliary heat:
K. Gas forced-air furnace

Thermal buffer:
L. Air-lock entryway
CONCLUSIONS/FINDINGS

This is a townhouse unit with common east and west walls. A two-story attached sunspace, with both vertical and sloped glazing, forms the south end of the unit. The sunspace is separated from the main living space by a brick wall, which has sliding glass doors to both levels, allowing some direct solar gain. A thermostatically controlled fan draws warm air from the sunspace to charge a rock bin under the north rooms.

With little exposed surface area, the building's heat loss coefficient is quite low, such that internal heat generation supplied more than 20% of the heating load through the winter. The sunspace also performed well, contributing more than 50% of the load each month. Despite large sunspace temperature variations, the interior temperature never exceeded 75°F (24°C) throughout the winter, showing no tendency to overheat.

Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
US/CO-09

SITE DMI
DENVER, COLORADO

BUILDING AND SYSTEM DESCRIPTION

Solar collection:
A Solar room and skylight
B Clerestory
C Other south-facing glass (Total south glazing area: 265 ft²)
D Solar domestic hot-water system

Thermal storage:
E 8-inch brick mass wall
F Basement concrete walls and slab
G Tiled concrete slab

Heat distribution:
H Warm-air intake and duct to basement storage
J Thermostatically-operated fan
K Return-air duct
L Open stairwell
M Roof vents

Auxiliary heat:
N Fireplace
P Gas forced-air furnace

Thermal buffers:
Q Wind-protected entryway
R North-zoned garage
CONCLUSIONS/FINDINGS

This house receives direct gain from south windows and a clerestory. The central living room has a vaulted ceiling to accommodate the clerestory, which charges an 8-in. (20-cm)-thick brick partition wall. The south glazing includes a small integral sunspace with skylights and a tile floor. Although it is a large house, it is relatively tight, with infiltration at only 0.38 air change per hour under typical winter conditions.

The solar aperture area is only 9% that of the floor area, and, consequently, the passive heating ratio was as low as 15% in December. Because of the efficiency of the building envelope, however, the auxiliary heating energy needs were small for a house of this size. The living room temperature occasionally exceeded 80°F (27°C), due to solar gains from the sunspace and the clerestory.

(By J. Swisher and T. Cowing)
Passive and Hybrid
Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
Denver Metro
Site DMU
Aurora, Colorado

US/CO-10

BUILDING AND SYSTEM DESCRIPTION

Solar collection and thermal storage:
A Partial Trombe thermal storage wall
B Additional direct-gain glazing
C Brick mass wall and pavers surrounding woodstove and flues
D Heat distribution:
D Stairwell
E Woodstove
F Gas forced-air furnace
Thermal buffers:
G Air-lock entryway
H Garage
CONCLUSIONS/FINDINGS

This house is a small split-level design with a partial basement and a crawl space. The south glazing is backed by a 3-ft (1-m)-high brick-veneered concrete wall. The main living area is at grade level, with bedrooms at the half levels above and below.

The auxiliary heating energy is relatively uncertain because the occupants insisted on using their woodstove throughout the heating season. The monthly energy summaries include estimates of wood heat in the auxiliary heating figures. Wood heat is not included in the auxiliary energy plotted on the hourly data graphs, but stove use is obvious from the sudden increases in the indoor temperature at night. The interior temperature was kept relatively cool, averaging 64°F (18°C). This reduced the purchased energy needs and allowed the solar component to meet about half the heating load.

Passive and Hybrid
Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
US/CO-12

SITE DML
AURORA, COLORADO

BUILDING AND SYSTEM DESCRIPTION

Solar collection:
A. Collector
B. Other south-facing windows
Thermal storage:
C. Mass Walls (inch brick veneer)
D. Basement slab and walls (poured concrete)
Heat distribution:
E. Pexite fan
F. Stairwell
Auxiliary heat:
G. Fireplace
H. Gas forced-air furnace

South elevation

Main Floor Plan

Lower Floor Plan
CONCLUSIONS/FINDINGS

This house is a multilevel design with south windows, skylights, and a clerestory. The top level contains the family room, with a vaulted ceiling for the clerestory and a brick-veneered north wall. The living room and kitchen are at grade level and contain the remaining solar glazing. Two bedrooms on the north side are partially below grade level with a half basement.

Although the solar aperture area is relatively small (only 9% that of the floor area), it was effective in meeting about half the heating load through the winter. The solar gain had little effect on the north bedrooms, which typically remained as much as 20°F (11°C) cooler than the family room on sunny winter days.

(by J. Wisler and T. Cowing)
This is a manufactured panelized house with a two-story solarium. The solarium has a tile floor charged by a large direct gain component. Solarium air is open to the interior living space and can be vented into the attic. The solarium glazing is fitted with an R5 insulating curtain that is mechanically drawn at night.
CONCLUSIONS/FINDINGS

The house was being used as a sales model, so it was occupied only during the day. Because the building was unoccupied at night, the internal gains were small. The night-time thermostat setting was about 13 °C, which resulted in low average indoor temperatures. The solar component supplied about 60% of the mid-winter heating load.

This is a single-story frame house located in central Connecticut. It is constructed on a concrete slab and bermed heavily on the north and west sides, where there are double walls with a 10 in. (25 cm) concrete outer wall and a 4 in. (10 cm) insulated inner wall. The combination of direct gain and a sunspace charges both the slab floor and a brick-faced concrete block wall between the sunspace and the living room. Two sets of sliding glass doors provide some control over heat flows between the sunspace and other zones. Night insulation consists primarily of insulating drapes on the south side. The north and east windows are insulated with sliding panels.
CONCLUSIONS/FINDINGS

The solar components met about 30% of the large heating load, except during a very cloudy December. The occupants kept the doors to the north bedrooms closed. Thus, the solar gain had little effect on these rooms, where the temperature would drop below 60°F (15°C) in the absence of auxiliary heat, even on very sunny winter days.

by J. Swisler and T. Cowing
This two-story house in eastern Iowa receives direct solar gain from 26 square meters of south-facing double-glazed windows. Heat is stored in water tubes directly behind the windows on the second floor. Additional water tubes embedded in the lower-story floor slab convect heat accumulated in the slab up the central dividing wall, to provide heat to the center of the house. Small copper tubes also buried in the south edge of the floor slab provide domestic hot water preheating. The upper floor windows are equipped with RSI-.60 thermal curtains to reduce night-time heat losses.
Twenty-two percent of the 27.34 GJ equipment heating load was supplied by the solar system. A solar fraction of 22% was achieved because the occupants were willing to endure very low building temperatures (the temperatures averaged only 15°C for the entire period). There are several reasons for the reduced performance of the system. The house is sited so that it faces 42 degrees west of south, which reduces the available solar energy to, and efficiency of, the collector subsystem. The lack of movable insulation for the lower-level collector glazing is important. Finally, high infiltration levels, which have been calculated as being in excess of 30% of the building heating load, also reduce performance. A large part of the losses appear to be through the uninsulated cooling bed under the floor slab. In spite of above problems, the system did save 5.88 GJ.

The Lo-Cal site is a single detached residence located in Champaign, Illinois. The building is one story built over a crawl space. The energy-saving features include superinsulation (RSI-4.2 walls, RSI-5.8 ceiling and RSI-3.5 crawl-space walls), an airlock-type entry and triple glazing on all of the windows. The floor of the house over the crawl space is uninsulated and the heat loss from the uninsulated ducts in the crawl space is intended to warm the floor for added comfort. The passive system consists of 18.6 square meters of south-facing triple-glazed windows. There is no storage subsystem other than the mass of typical wood-frame construction materials.
The building performed well during the monitoring period, but a major portion of the heat loss was through the uninsulated floor over the crawl space. This loss rate was measured with a co-heating test. The loss rate of the building with the unheated crawl space was 277 W/°K with the crawl space heated. This results in a difference of 145 W/°K, i.e., 53% of the heat loss of the house is through the floor. During normal operation of the building, the heat loss from the uninsulated heating ducts in the crawl space keeps the crawl space at approximately 16.7°C. The loss from the ducts heating the floor was designed to provide warm floors and improve comfort. The performance of this house could be considerably improved if the floor over the crawl space was better insulated and the ducts relocated within the conditioned space or well-sealed and insulated. This improvement would increase the delivered furnace efficiency and reduce the heat loss of the house.

Source of Information: Solar Energy System Performance Evaluation: Lo-Cal
Performance data for systems evaluation

PROJECT TITLE

VS/MA-04

SITE NEA

HAMILTON, MASSACHUSETTS

BUILDING AND SYSTEM DESCRIPTION

This two-story masonry house is located in northeastern Massachusetts. It is bermed continuously on the north and west sides and over the roof of the first floor. Direct solar gain is received from south windows and a clerestory above the first floor living room. Insulating drapes were installed in the spring of 1982. The air-source heat pump was operated in the resistance mode only during the monitoring period. A heat exchanger system to regulate the makeup air was not operated during the monitoring period.
CONCLUSIONS/FINDINGS

The house has a relatively low infiltration rate, due to the extensive use of earth berming. However, the heat loss coefficient is relatively high because of the large glazing area. The solar contribution was 34% of the heating load in January but decreased in the spring, probably because of the large overhang above the major direct gain component. The building's ability to retain solar heat was disappointing, as the auxiliary heaters activated soon after sundown on sunny winter days. This should improve with the use of night insulation.

(by J. Swisher and T. Cowling)
This is a two-story frame house located in north-central Massachusetts. It features a full length sunspace with 208 ft² (19.3 m²) of vertical and sloped glazing. Thermal storage mass is provided by an insulated concrete floor and an 8 in. (20 cm) concrete wall separating the sunspace from the living-dining area. Sliding glass doors and windows in this wall provide the occupants with some control over energy exchanges between interior zones. Also, manually operated windows are located between the sunspace and the second floor bedrooms. Insulating shades are used on the sloped glazing at night.
CONCLUSIONS/FINDINGS

The average interior temperature was maintained at a rather high 70°F (21°C) over the heating season. The living zone temperature was quite stable despite large sunspace temperature swings. The passive solar heating contributions were impressive, providing nearly 50% of the space heating load. Internal energy gains to the living zone appear unusually low for this house. This is due to the location of some major appliances in the unheated basement.

Performance data for systems evaluation

The National Bureau of Standards Passive Solar Test Building was constructed to generate performance data on passive systems and components under highly controlled conditions. The building is divided into four sections by heavily-insulated interior walls. The inside walls, storage mass and glazing can be reconfigured for different test purposes.

230
CONCLUSIONS/FINDINGS

Cell #1 of the facility is used to house the data acquisition system and a special calorimeter used for testing passive solar components. Data have been taken in the storage wall and direct gain cells as part of the DOE Class A Passive Solar Test Program. In this program, data from highly controlled test periods is used for validation of building energy analysis simulations. Five data sets have been generated to date from the direct gain cell and two from the storage wall cell, each under different ambient or indoor control conditions. These data sets are currently being used by Los Alamos National Laboratory and the Solar Energy Research Institute to do validation runs on DOE2.1, BLAST 2.0, SERI-RES and TRYNSYS. These standard data sets are well-documented and available to other researchers.

Rymark I is a standard bi-level home constructed by Ryan Homes in Frederick, Maryland. It is a 13.4 meter by 11.0 meter rectangular structure fitted with the Ryan standard energy package (RSI-5.3 ceiling, RSI-2.5 wall, double glazing, insulated doors, and foundation perimeter insulation). The rear wall of the house faces south and has 6 square meters of glass. There is no glass on the east or west walls. Rymark I is Ryan's standard building with no modifications other than a southern orientation. This building is used as a "reference" building to compare the performances of Rymark II and Rymark III.
CONCLUSIONS/FINDINGS

This is a conventional "reference" house monitored for side-by-side comparison with Rymark II and Rymark III. The house has a lower heating load than expected because it was kept at an average of 15 °C for the monitoring period. The net solar gain for the season was 8% of the incident solar energy.

Rymark II is the same basic building as Rymark I with some modifications for passive solar. The south-facing window area is almost doubled to approximately 11.5 square meters and the north-facing glass was reduced by 15%. All the windows are triple-glazed and have RSI-.9 "window quilt" movable insulation. A .61 meter overhang is provided on the south side to prevent overheating in the summer.
The net solar gain on the south-facing windows was 735 MJ. The glazing system collected 24% of the incident solar energy. The internal gains were very low because the building was unoccupied.

The floor slab is covered by carpet and participated very little in the net energy balance of the building, maintaining an average temperature of 13.9 °C over the monitoring period. The window insulation was not used regularly during the monitoring period because the building was unoccupied.

The overall savings of this house over the Rymark I house due to the "sun-tempering" of the design is estimated to be 20%, at an incremental cost of $1300.

Performance data for systems evaluation

PROJECT TITLE
RYMARK III

US/MD-11
FREDERICK, MARYLAND

BUILDING AND SYSTEM DESCRIPTION

Ry mark III has 17.7 square meters of south-facing glass. The south-facing windows are triple-glazed with reflective louvers behind the inner glazing. The blinds are designed to reflect sunlight onto the brown ceiling which contains a phase-change heat storage system. This system is based on the principles demonstrated in the MIT SOLAR 5 Project. The phase-change ceiling consists of 52 square meters of eutectic salts (sodium sulphate decahydrate) in bags laid between the ceiling rafters. RSI-7 insulation is placed over the bags in the ceiling. The eutectic salts are designed to change phase at 23 °C. The ceiling storage system is located in the southern half of the ceiling in the dining room, kitchen, master bedroom and the recreation room downstairs.
Rymark III was unoccupied for the monitoring period. The non-solar energy consumption represents a 23% savings over Rymark I.

The effect of the thermal mass ceiling caused a shift in the auxiliary energy use profile. Typically, the house warmed up slowly in the morning and the auxiliary heat turned off at about 10:00 a.m. The storage system carried the load until 9:00 p.m. when the auxiliary heat came back on.

This two-story frame house is located along the lower seacoast of Maine. It is constructed over a full basement and has a retrofit greenhouse built over a crawl space with 16 ft² (15.0 m²) of sloped, south-facing glazing. No significant thermal storage mass is present. A sliding glass door separates the greenhouse from the living room. An electric fan is also used to move heated air from the greenhouse to a first floor bedroom. Insulating shutters are used in the greenhouse only.
CONCLUSIONS/FINDINGS

Space heating requirements were kept to a minimum by maintaining the average interior temperature at a moderate 65°F (18°C) and setting the thermostat back several degrees at night. The greenhouse met 40% of the space heating load. With the sliding glass doors open during the day, heat from the greenhouse was convected even to areas on the second floor. The lack of thermal storage mass and the closing of the sliding glass door brought the greenhouse temperature down rapidly in the evening, even with the use of night insulation. The temperature in the greenhouse was not permitted to drop below 45°F (7°C).

The Arno Kahn site is located in Hermantown, Minnesota, a suburb of Duluth. The house is a modified direct-gain/sunspace system integrated with a "thermal envelope". The two-story inner zone has approximately 121 square meters of conditioned living space. The outer zone consists of a three-story solarium, a convection loop along the roof, north walls and basement, and the thermal mass below the living zone. The exterior shell is heavily insulated. A sand-filled concrete block three-story mass wall separates the sunspace from the living space. Manually operated shades originally provided night insulation on the south-facing windows. These were replaced by automatically-controlled RSI-1.8 thermal curtains in the fall of 1981.
In 1980-81, 27% of the building heat load was lost through the glazing. Subsequently, a complete movable insulation system was installed.

The most notable feature of the house is the "double envelope" design. In theory, air is supposed to flow out the top of the sunspace during the day, across a ceiling chase and down the north walls, dumping the heat into the basement slab and earth below. At night, air is supposed to flow up the north walls, picking up heat from the basement. In practice, this flow was found to be very limited, and the outer envelope temperatures were highly stratified.

CONCLUSIONS/FINDINGS

Source of Information: Solar Energy System Performance Evaluation: Arno Kahn (by Vitro Labs for NSOH)
This large two-story house in southeastern Nebraska has a variety of passive solar features. The lower level has a large sunspace with both vertical and sloped glazing. A common wall between the sunspace and the living room is heavily glazed for pass-through direct gain. A thermostatically-controlled sunspace fan charges a rockbed below the brick floor of the sunspace. The upper level receives direct gain through south windows.
CONCLUSIONS/FINDINGS

The auxiliary heating needs were quite low for a building of this size. The solar contribution was small during an unusually cold January but increased to 40% during February and March. The poor January performance can be attributed to two factors. First, the mass wall component was shaded during much of the afternoon. The higher sun angles after January alleviated this problem. Second, the cold January temperatures caused excessive heat losses through the sunspace, negating much of its energy collection. Because the rockbed is below the sunspace, not the living space, its energy storage is of little use to the living space when the sunspace is colder than the living space, as was the case throughout January.

By J. Swisher and T. Cowling
Passive and Hybrid Solar Low Energy Buildings

Performance data for systems evaluation

PROJECT TITLE
Site SSK
Black Mountain, North Carolina
US/NC-03

BUILDING AND SYSTEM DESCRIPTION

This small slab-on-grade house is located in Black Mountain, in western North Carolina. It has mass walls behind most of the south glazing. These walls are made of 20 cm-thick concrete blocks filled with cement. The south glazing is fitted with insulating shades for reducing both winter night-time heat loss and summer day-time heat gain.
CONCLUSIONS/FINDINGS

The amount of south glass is quite small; it is less than 10% of the floor area of the house. Nevertheless, it was effective in meeting 36% of the heating load through the winter. The thermal mass helped maintain relatively stable temperatures in the living space.
This house is located in a wooded area near Trenton, New Jersey. It incorporates a two-story direct gain sunspace, a three-story Trombe wall and a passive solar water preheat tank. Storage of solar heat is provided in the .30 meter thick Trombe wall and in a series of phase-change rods in the sleeping loft. A small fan redistributes collected heat in the upstairs to the lower floor.
The overall collection efficiency was an estimated 18% of the total incident radiation.

The conduction heat loss from the sunspace was as large as the solar energy collected, at 9.12 GJ lost. This loss was due to the large (15.6 net m\(^2\) glass area. The addition of a movable insulating curtain could reduce the heat loss from the glass area by up to 1/3. This addition would be the single most effective method of increasing the solar heating contribution.

The estimated heat flux from the interior of the Trombe wall was 1.66 GJ over the six-month season, which translates to an estimated overall collection efficiency of 4%. This indicates a fundamental problem at the site – the high exterior losses from the Trombe wall. The site owner operated the wall in a purely conductive mode; that is, the interior wall vents were not opened during the day. Energy was transferred through the wall in a conduction mode only, which may have limited the wall output to some extent.

The Trombe wall had a seasonal variation in temperature as well as a daily temperature swing. The mss wall participates less in the dead of winter (Dec. and Jan.) when the building temperature nearly equals the wall temperature. The wall did provide a net positive effect, since it was essentially adiabatic (i.e., no net heat transfer) during most of the six-month heating season.

Source of Information: Color Energy System Performance Evaluation: Environmental Partnership (by Vitro Labs for NSD)
The collection aperture on this single-story residence in central New York State consists of vertical glazing on most of the south wall and a clerestory which admits solar radiation into the north rooms. The glazing is fixed double-walled fiberglass with operable glass windows to permit venting. All south-facing glazing has movable quilt-type insulated curtains. Both the south wall and the clerestory have overhangs to prevent summer overheating. Heat storage is in the concrete floor slab and exterior insulated concrete walls.
CONCLUSIONS/FINDINGS

The system was operational throughout the 1980-81 heating season and performed very well. The house was unoccupied for the entire period. During this period, the auxiliary heating thermostats were set back. This allowed the solar system to supply most of the space heating requirements of the building. Since the house was unoccupied, there was no one there to operate the movable insulation. It is anticipated that when the house is occupied the increased heating load resulting from the higher thermostat setting will be partially offset by the use of the insulating curtains.

Source of Information: Solar Energy System Performance Evaluation: Gill Harrop
(by Vitro Labs for NSDU)
The lower floor of this 149 square meter, two-level house in Cincinnati, Ohio is below grade. The greenhouse has 37 square meters of double glazing and is constructed so that solar energy can be admitted to both floors. The upper 8 square meter portion of the greenhouse is a site-built active solar collector, from which solar heated air is fan-forced into the living space. Insulating shades (RSI=.6) reduce greenhouse heat losses at night. Additional solar energy is collected by two windows located in the sections of the south wall which extend to the sides of the greenhouse. Thermal storage is provided by a 30 centimeter concrete and brick mass wall, located between the greenhouse and living area, the floor slab of the greenhouse and a phase-change module mounted on the south face of the mass wall. Extra heat, when required, is provided by a wood-burning stove and electric baseboard heaters.
The infiltration loss was 36% of the building heat load. The internal gains were high. This is due to the frequent use of the electric clothes dryer which was vented indoors during the heating season. The electric baseboard heaters provided 21% of the heat load. The electric baseboard heaters were mainly used in the bedrooms on the lower level. Because of stratification of heat in the building, the upstairs is always warmer than the downstairs. A ceiling fan is used over the stairwell to try to destratify the air, but its effectiveness is limited. At times, when the greenhouse was hot, the upstairs overheated and the downstairs was cool and required auxiliary heating.

The movable insulation in the greenhouse was used when possible on cold nights and to prevent overheating during warm days. The operation of the "window quilt" was limited for much of the season due to problems with the curtain pulling loose from the track. The weight of the curtain on a 60° slope tends to pull it out of the track.

The storage wall absorbed 19.15 GJ and gave off 19.03 GJ. Ninety-five percent of the solar energy used went through storage before going to the load. The phase-change system responded very quickly to incoming solar radiation. The phase-change storage tubes in the vertical position seem to stratify severely.
This single-story home, located in Eugene, Oregon, has a direct gain system with 16.1 square meters of south wall glazing area and 2.9 square meters of clerestory windows. Eighteen 210-litre drums located directly behind the south wall windows provide thermal storage. Auxiliary storage is provided by the 10 cm floor slab. Night heat losses from the clerestory and the windows directly in front of the water drums are reduced by insulating shutters which have an RSI-2.5 value. Auxiliary space heating is provided by a wood stove and an electric furnace unit.
CONCLUSIONS/FINDINGS

The number of heating degree-days for the monitored period, 4,129, was 8% lower than the long-term average of 4,503 heating degree-days. The amount of measured insolation available to the south glazing was significantly lower (50%) than the long-term expected average. The lower insolation values are partially due to local obstructions, consisting of a house located not too far to the south and a picket fence. In addition, the weather cover on the winch for the shutters shades the lower collectors and pyranometer part of the time. The low available insolation levels in part explain the rather poor performance demonstrated by the passive solar system. Also influential were the elevated interior temperatures which required additional auxiliary energy to maintain.

The house was occupied during the entire monitored period. The owners did experience some difficulties operating the movable insulation. The shutters jammed in the partially-open position, which prevented calculation of the operational incident solar energy or night-time R-values of the windows. Losses from the collector are based on estimated times of operation.

Performance data for systems evaluation

PROJECT TITLE SITE NEL

US/RI-02 JAMESTOWN, RHODE ISLAND

BUILDING AND SYSTEM DESCRIPTION

This single-story house is located near the Atlantic seacoast in Rhode Island. It was manufactured in sections and assembled on a full-basement concrete foundation. It has a sunspace with 6.5 square meters of sloped glazing and a concrete floor for thermal mass. The house also receives direct solar gain through 9.7 square meters of south glazing. Heated air from the sunspace can be blown to the bedrooms in the rear of the house through insulated plenums in the basement, although the fan did not operate during the monitoring period.
CONCLUSIONS/FINDINGS

This house remained unoccupied through the heating season so there was very little internal heating. Also, the interior temperatures were allowed to float during December and January and at times fell below 50°F (10°C). Thus, the measured solar contribution to the space heating load of 46% does not reflect the system's performance under normal conditions.

Space heating for this house is supplied by three sections of two-story Trombe wall, and a sunspace located on the third floor. Thermal storage is provided by the 3.0 meter Trombe wall, a hollow-core north wall and two centrally located fireplaces. RSI-2.1 thermal curtains reduce night-time heat losses from the Trombe wall.
CONCLUSIONS/FINDINGS

The Trombe wall collection efficiency was 32%, while the sunspace collection efficiency was 33%. The movable insulation subsystem required 0.53 GJ to operate. Thus, the solar collection Coefficient of Performance (COP) was 38.0. Ninety-eight percent of the solar energy to the load was delivered via storage. Direct gains were small with the sunspace contributing about 6.94 GJ of the collected solar energy. Most of the sunspace solar energy heated the upper level of the home, while 1.99 GJ were transferred by fans into the rear mass air-core wall. The automated movable insulation system reduced heat losses through the single-glazed Trombe wall.

The performance of the passive solar cooling subsystem was excellent. Auxiliary cooling energy was small, 0.07 GJ, and was used only at the end of July. The storage mass worked very well, reducing temperature swings during the cooling season. A total of 22.30 GJ of thermal energy was removed from the home by a combination of the building's resistance to net radiant gains and through night venting via windows, cool tubes, and the twin thermal chimneys. The thermal chimneys have been shown to remove approximately 24.6 MJ per hour at a 4.4°C difference in temperature from inside to the outdoors.

Source of Information: Solar Energy System Performance Evaluation; Roberts Home
Performance data for systems evaluation

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>Site SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>US/VA-05</td>
<td>Richmond, Virginia</td>
</tr>
</tbody>
</table>

BUILDING AND SYSTEM DESCRIPTION

This small slab-on-grade house in northern Virginia has a water wall in the south-facing great room on the lower level. The upper level receives some direct gain. The water wall consists of sixteen 94-gal (355-L) modules made of black fiberglass-reinforced polyester.
Typical Summer Day

Typical Winter Day

Performance Summary

Monthly Heating Load

- Heating Source
 - Internal
 - Auxiliary
 - Passive

Annual Summary

- Load Reduction from Passive Solar
- Load Reduction from Internal Heat Generation
- Net Auxiliary Heating

- Heating Load Provided by Passive Solar: 45%
- Heating Load Provided by Internal Generation: 24%
- Heating Load Provided by Auxiliary Heating: 30%

CONCLUSIONS/FINDINGS

The solar components performed well, meeting almost half of the heating load. The large thermal mass maintained comfortable temperatures in the great room, with no overheating. The auxiliary heating control used a nighttime setback of the great room temperature and a daytime setback of the bedroom temperatures. Thus, the temperature in the bedrooms often dropped below 60°F (16°C) during cloudy winter days.

This single-story frame house is located in northern Vermont. It is a simple redesign of a standard "tract" home, with significant energy conservation features such as double-wall construction and triple-glazed windows. No thermal storage mass is provided other than that attributable to the interior structure and furnishings. Ventilation air for the living zone is tempered by an air-to-air heat exchanger.
CONCLUSIONS/FINDINGS

An effective vapor barrier and extensive insulation contributed to a relatively low building heat loss coefficient of 221 Btu/hr·°F (117 W/°C) and typical infiltration rate of 0.20 air change per hour. The relatively small south glazing area supplied 20% of the space heating load. The solar effects occurred primarily during the daytime with little carryover to nighttime periods. The thermal mass was sufficient for the small glazing area, as the interior temperature was between 65° and 70°F (18°-21°C) about 80% of the time. Interior partitions apparently prevented solar heating in the northern rooms.

(by J. Swisher & T. Covington)
This house in western Wisconsin receives direct gain from south windows and clerestories which charge interior brick storage walls. A small integral solarium with a concrete floor is adjacent to the living room. The house is well-insulated, with RSI-5.8 walls and triple-glazed windows. South windows have insulating drapes to reduce night-time heat loss.
CONCLUSIONS/FINDINGS

Due to the efficiency of the building envelope, the auxiliary heating needs were low for such a cold climate. The solar component contributed 26% of the winter heating load. Although the solarium temperature fluctuated a great deal, the temperature in the rest of the house was more stable and comfortable.

APPENDIX A

LIST OF TASK VIII, SUBTASK A REPRESENTATIVES
Passive and Hybrid Solar Low Energy Buildings

Subtask A Contact Persons

<table>
<thead>
<tr>
<th>Country</th>
<th>Name</th>
<th>Position/Institution</th>
<th>Phone</th>
<th>Telex</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANADA</td>
<td>Sherif Barakat</td>
<td>Division of Building Research Thermal Performance Section</td>
<td>(613) 993 9538</td>
<td>053-3145 NRC ADMIN OTT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Research Council of Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ottawa, Ontario K1A OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENMARK</td>
<td>Ove Mørck</td>
<td>Thermal Insulation Lab. Technical University of Denmark</td>
<td>(02) 88 35 11/5234</td>
<td>37529 DTH DIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK-2800 Lyngby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLLAND</td>
<td>Bart Poel</td>
<td>BOUWCENTRUM Weena 700 NL - Rotterdam</td>
<td>(10)11 61 81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITALY</td>
<td>Sergio Los Synergia</td>
<td>Via B. Ferracina 36</td>
<td>(424) 212343</td>
<td>22843</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-36061 Bassano Del Grappa (VI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>Dr. T. Haskell</td>
<td>Physics & Engineering Lab. Dept. of Scientific & Ind. Research</td>
<td></td>
<td>N23814</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Hutt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORWAY</td>
<td>Terje Jacobsen</td>
<td>SINTEF Energy and Fluid Dynamics/HVAC-Section N-7034 Trondheim-NTH</td>
<td>(7) 593871</td>
<td>55620 sntf n</td>
</tr>
<tr>
<td>SPAIN</td>
<td>Jaime Lopez de Asian Bioclimatica</td>
<td>Seminario de Arquitectura Excuela Superior de Arquitectura Arda Reina Mercedes SN</td>
<td>(954) 61 01 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>41012 Sevilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEDEN</td>
<td>Ake Blomsterberg</td>
<td>Building Physics National Testing Institute P.O. Box 857</td>
<td>33-16 50 00/5174</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-501 15 Borås</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>S. Robert Hastings EMPA - Bauphysik</td>
<td>CH-8600 Dubendorf</td>
<td>(1) 823 4795</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Michael J. Holtz</td>
<td>Architectural Energy Corp. 8753 Yates Drive, Suite 105 Westminster, CO 80030</td>
<td>(303) 428-8228</td>
<td>3720504-AEC</td>
</tr>
</tbody>
</table>